Video 4: Big-O Notation

COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

Big O Notation

Definition: O-notation ("Big O")

Let $g:\mathbb{N}\to\mathbb{N}$ be a function. Then O(g(n)) is the set of functions:

 $O(g(n)) = \{f(n) : \text{ There exist positive constants } c \text{ and } n_0 \}$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$

Meaning: $f(n) \in O(g(n))$: "g grows asymptotically at least as fast as f up to constants"

O-Notation: Example

-5000

Example:
$$f(n) = \frac{1}{2}n^2 - 10n$$
 and $g(n) = 2n^2$

20000

15000

5000

Then: $g(n) \in O(f(n))$, since $6f(n) \ge g(n)$, for every $n \ge n_0 = 60$

O-Notation: Example

Example:
$$f(n) = \frac{1}{2}n^2 - 10n$$
 and $g(n) = 2n^2$

25000
20000
15000
10000
5000

Then: $g(n) \in O(f(n))$, since $6f(n) \ge g(n)$, for every $n \ge n_0 = 60$

More Examples/Exercises

Recall:

$$O(g(n)) = \{f(n) : \text{ There exist positive constants } c \text{ and } n_0 \}$$

such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0\}$

Exercises:

- $100n \stackrel{?}{\in} O(n)$ Yes, chose $c = 100, n_0 = 1$
- $0.5n \stackrel{?}{\in} O(n/\log n)$ No: Suppose that such constants c and n_0 exist. Then, for every $n \ge n_0$:

$$0.5n \le cn/\log n$$

 $\log n \le 2c$
 $n \le 2^{2c}$, a contradiction,

since this does not hold for every $n > 2^{2c}$.

Recipes

Proving that $f \in O(g)$:

Find constants c, n_0 as in the statement of the definition of Big-O, i.e., such that $f(n) \le c \cdot g(n)$, for all $n \ge n_0$

Proving that $f \notin O(g)$:

Proof by contradiction: Assume that constants c, n_0 exist as in the statement of the definition of Big-O and derive a contradiction

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that $f,g \in O(h)$. Then: $f+g \in O(h)$.

Proof.

To Do: We need to find constants C, N_0 such that

$$f(n) + g(n) \le C \cdot h(n)$$
, for every $n \ge N_0$.

Since $f \in O(h)$ there exist constants c, n_0 such that

$$f(n) \le c \cdot h(n)$$
, for every $n \ge n_0$.

Since $g \in O(h)$ there exist constants c', n'_0 such that

$$g(n) \le c' h(n)$$
, for every $n \ge n'_0$.

Let C = c + c' and let $N_0 = \max\{n_0, n'_0\}$. Then:

$$f(n) + g(n) \le ch(n) + c'h(n) = C \cdot h(n)$$
 for every $n \ge N_0$. \square

Further Properties

Lemma (Polynomials)

Let $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$, for some integer k that is independent of n. Then: $f(n) \in O(n^k)$.

Proof: Apply statement on last slide O(1) times (k times)

Attention: Wrong proof of $n^2 \in O(n)$: (this is clearly wrong)

$$n^{2} = n + n + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}}$$

$$= O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n)$$

Application of statement on last slide n times! (only allowed to apply statement O(1) times!)

Runtime of Algorithms

Tool for the Analysis of Algorithms

- We will express the runtime of algorithms using *O*-notation
- This allows us to compare the runtimes of algorithms
- **Important:** Find the slowest growing function f such that our runtime is in O(f) (most algorithms have a runtime of $O(2^n)$)

Important Properties for the Analysis of Algorithms

Composition of instructions:

$$f \in O(h_1), g \in O(h_2)$$
 then $f + g \in O(h_1 + h_2)$
• Loops: (repetition of instructions)

 $f \in O(h_1), g \in O(h_2)$ then $f \cdot g \in O(h_1 \cdot h_2)$

Hierachy

Rough incomplete Hierachy

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g., $O(\log^2 n)$, $O(\log^{10} n)$, . . .
- Linear time: O(n) (e.g., time to read the input)
- Quadratic time: $O(n^2)$ (potentially slow on big inputs)
- Polynomial time: $O(n^c)$ (used to be considered efficient)
- Exponential time: $O(2^n)$ (works only on very small inputs)
- Super-exponential time: e.g. $O(2^{2^n})$ (big trouble...)