Video 4: Big-O Notation

COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

Dr Christian Konrad Video 4: Big-O Notation 1/9



Big O Notation

Definition: O-notation (“Big O")
Let g : N — N be a function. Then O(g(n)) is the set of
functions:

O(g(n)) = {f(n) : There exist positive constants ¢ and ng
such that 0 < f(n) < cg(n) for all n > np}

Meaning: f(n) € O(g(n)) : “g grows asymptotically at least as
fast as f up to constants”

Dr Christian Konrad Video 4: Big-O Notation 2/ 9



O-Notation: Example

Example: f(n) = 1n? — 10n and g(n) = 2n°

20000

T
0.5n2-10n
2n?

15000

10000

5000

-5000 I I I I I I I I I
10 20 30 40 50 60 70 80 90 100

Then: g(n) € O(f(n)), since 6f(n) > g(n), for every n > ny = 60

Dr Christian Konrad Video 4: Big-O Notation 3/9



O-Notation: Example

Example: f(n) = 1n? — 10n and g(n) = 2n°

25000 T

T

0.5n2 - 10n

2n2

20000 |- 6(0.5[‘12 -10n)
15000
10000
5000

0
-5000 I I I I I I I I I

10 20 30 40 50 60 70 80 90 100

Then: g(n) € O(f(n)), since 6f(n) > g(n), for every n > ny = 60

Dr Christian Konrad Video 4: Big-O Notation 3/9



More Examples/Exercises

Recall:

O(g(n)) = {f(n) : There exist positive constants ¢ and ng
such that 0 < f(n) < cg(n) for all n > no}

Exercises:
?
@ 100n € O(n) Yes, chose ¢ = 100, np = 1

?
@ 0.5n € O(n/logn) No: Suppose that such constants ¢ and ng
exist. Then, for every n > ng :

0.5n < c¢n/logn
logn < 2¢
n < 2% ,a contradiction,

since this does not hold for every n > 22¢.

Dr Christian Konrad Video 4: Big-O Notation 4/ 9



Proving that f € O(g):

Find constants c, ng as in the statement of the definition of Big-O,
i.e., such that f(n) < c-g(n), for all n> ng

Proving that ¢ O(g):

Proof by contradiction: Assume that constants ¢, ny exist as in the
statement of the definition of Big-O and derive a contradiction

Dr Christian Konrad Video 4: Big-O Notation



Sum of Two Functions

Lemma (Sum of Two Functions)
Suppose that f,g € O(h). Then: f + g € O(h) .

Proof.
To Do: We need to find constants C, Ny such that

f(n) +g(n) < C- h(n), for every n > N .

Since f € O(h) there exist constants c, ng such that
f(n) < c- h(n), for every n> ng .
Since g € O(h) there exist constants ¢’, njy such that
g(n) < c’h(n), for every n > nj .
Let C = c+ ¢’ and let Ng = max{ng, ny}. Then:
f(n) + g(n) < ch(n) + c’h(n) = C - h(n) for every n > N . [

Dr Christian Konrad Video 4: Big-O Notation 6/ 9



Further Properties

Lemma (Polynomials)

Let f(n) = co + cin+ con® + czn® + - - - + ckn¥, for some integer k
that is independent of n. Then: f(n) € O(n¥) .

Proof: Apply statement on last slide O(1) times (k times) O

Attention: Wrong proof of n?> € O(n): (this is clearly wrong)

P = n+n+nt+..n=0(0n)+0(n) +n+...n
———— ——
n—2 times n—2 times
= Onm+n+...n=0(n)+0(n)+n+...n=
———— —_————
n—2 times n—3 times
= On)+n+...n=---=0(n).
~———
n—3 times

Application of statement on last slide n times! (only allowed to
apply statement O(1) times!)

Dr Christian Konrad Video 4: Big-O Notation 7/ 9



Runtime of Algorithms

Tool for the Analysis of Algorithms
@ We will express the runtime of algorithms using O-notation
@ This allows us to compare the runtimes of algorithms

@ Important: Find the slowest growing function f such that our
runtime is in O(f) (most algorithms have a runtime of O(2"))

Important Properties for the Analysis of Algorithms

@ Composition of instructions:

f e O0(h),g € O(hy) then f + g € O(h1 + h)
@ Loops: (repetition of instructions)

fe O(hl),g € O(hg) then f - g € O(hl . hg)

Dr Christian Konrad Video 4: Big-O Notation 8/ 9



Rough incomplete Hierachy

e Constant time: O(1) (individual operations)

@ Sub-logarithmic time: e.g., O(loglog n)

e Logarithmic time: O(log n) (FAST-PEAK-FINDING)
Poly-logarithmic time: e.g., O(log? n), O(log!® n), ...
Linear time: O(n) (e.g., time to read the input)
Quadratic time: O(n?) (potentially slow on big inputs)
Polynomial time: O(n°) (used to be considered efficient)

Exponential time: O(2") (works only on very small inputs)

@ Super-exponential time: e.g. 0(22") (big trouble...)

Dr Christian Konrad Video 4: Big-O Notation 9/ 9



