
Video 5: Θ and Big-Ω
COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

Dr Christian Konrad Video 5: Θ and Big-Ω 1 / 8



Limitations/Strengths of Big-O

O-notation: Upper Bound

Runtime O(f (n)) means on any input of length n the runtime
is bounded by some function in O(f (n))

If runtime is O(n2), then the actual runtime could also be in
O(log n), O(n), O(n log n), O(n

√
n), etc...

This is a Strong Point:

Worst case running time: A runtime of O(f (n)) guarantees
that algorithm won’t be slower, but may be faster

Example: Fast-Peak-Finding often faster than 5 log n

How to Avoid Ambiguities

Θ-notation: Growth is precisely determined (up to constants)

Ω-notation: Gives us a lower bound (up to constants)

Dr Christian Konrad Video 5: Θ and Big-Ω 2 / 8



Θ-notation

“Theta”-notation:
Growth is precisely determined up to constants

Definition: Θ-notation (“Theta”)

Let g : N→ N be a function. Then Θ(g(n)) is the set of functions:

Θ(g(n)) = {f (n) : There exist positive constants c1, c2 and n0

s.t. 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0}

f ∈ Θ(g): “f is asymptotically sandwiched between constant
multiples of g”

Dr Christian Konrad Video 5: Θ and Big-Ω 3 / 8



Symmetry of Θ

Lemma

The following statements are equivalent:

1 f ∈ Θ(g)

2 g ∈ Θ(f )

Proof. Suppose that f ∈ Θ(g). We need to prove that there are
positive constants C1,C2,N0 such that

0 ≤ C1f (n) ≤ g(n) ≤ C2f (n), for all n ≥ N0 . (1)

Since f ∈ Θ(g), there are positive constants c1, c2, n0 s.t.

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n), for all n ≥ n0. (2)

Setting C1 = 1
c2

, C2 = 1
c1

,N0 = n0, then (1) is equivalent to (2).

Dr Christian Konrad Video 5: Θ and Big-Ω 4 / 8



Further Properties of Θ

More on Theta

Lemma (Relationship between Θ and Big-O)

The following statements are equivalent:

1 f ∈ Θ(g)

2 f ∈ O(g) and g ∈ O(f )

Proof. → Exercise.

Runtime of Algorithm in Θ(f (n))?

Only makes sense if alg. always requires Θ(f (n)) steps, i.e.,
both best-case and worst-case runtime are Θ(f (n))

This is not the case in Fast-Peak-Finding

However, correct to say that worst-case runtime of alg. is
Θ(f (n))

Dr Christian Konrad Video 5: Θ and Big-Ω 5 / 8



Ω-notation

Big Omega-Notation:

Definition: Ω-notation (“Big Omega”)

Let g : N → N be a function. Then Ω(g(n)) is the set of
functions:

Ω(g(n)) = {f (n) : There exist positive constants c and n0

such that 0 ≤ cg(n) ≤ f (n) for all n ≥ n0}

f ∈ Ω(g): “f grows asymptotically at least as fast as g up to
constants”

Dr Christian Konrad Video 5: Θ and Big-Ω 6 / 8



Properties of Ω

Lemma

The following statements are equivalent:

1 f ∈ Ω(g)

2 g ∈ O(f )

Proof. → Exercise.

Examples: Big Omega

10n2 ∈ Ω(n)

6n ∈ Ω(n8)

Reverse examples for Big-O to obtain more examples

Runtime of Algorithm in Ω(f )?
Only makes sense if best-case runtime is in Ω(f )

Dr Christian Konrad Video 5: Θ and Big-Ω 7 / 8



Using O, Ω, Θ in Equations

Notation

O, Ω, Θ are often used in equations

∈ is then replaced by =

Examples

4n3 = O(n3)

n + 10 = n + O(1)

10n2 + 1/n = 10n2 + O(1)

Observe

Sloppy but very convenient

When using O, Θ, Ω in equations then details get lost

This allows us to focus on the essential part of an equation

Not reversible! E.g., n + 10 = n + O(1) but
n + O(1) 6= n + 10...

Dr Christian Konrad Video 5: Θ and Big-Ω 8 / 8


