

Dr Christian Konrad

Limitations/Strengths of Big-O

O-notation: Upper Bound

- Runtime O(f(n)) means on any input of length n the runtime is bounded by some function in O(f(n))
- If runtime is $O(n^2)$, then the actual runtime could also be in $O(\log n)$, O(n), $O(n \log n)$, $O(n\sqrt{n})$, etc...

This is a Strong Point:

- Worst case running time: A runtime of O(f(n)) guarantees that algorithm won't be slower, but may be faster
- Example: FAST-PEAK-FINDING often faster than 5 log *n*

How to Avoid Ambiguities

- Θ-notation: Growth is precisely determined (up to constants)
- Ω -notation: Gives us a lower bound (up to constants)

"Theta"-notation:

Growth is precisely determined up to constants

Definition: Θ -notation ("Theta") Let $g : \mathbb{N} \to \mathbb{N}$ be a function. Then $\Theta(g(n))$ is the set of functions: $\Theta(g(n)) = \{f(n) : \text{There exist positive constants } c_1, c_2 \text{ and } n_0$ s.t. $0 \le c_1g(n) \le f(n) \le c_2g(n) \text{ for all } n \ge n_0\}$

 $f \in \Theta(g)$: "f is asymptotically sandwiched between constant multiples of g"

Symmetry of Θ

Lemma

The following statements are equivalent:

$$f\in \Theta(g)$$

2 $g \in \Theta(f)$

Proof. Suppose that $f \in \Theta(g)$. We need to prove that there are positive constants C_1, C_2, N_0 such that

$$0\leq C_1f(n)\leq g(n)\leq C_2f(n), ext{for all }n\geq N_0$$
 . (1)

Since $f \in \Theta(g)$, there are positive constants c_1, c_2, n_0 s.t.

$$0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n), \text{ for all } n \geq n_0. \tag{2}$$

Setting $C_1 = \frac{1}{c_2}$, $C_2 = \frac{1}{c_1}$, $N_0 = n_0$, then (1) is equivalent to (2).

4/8

Further Properties of Θ

More on Theta

Lemma (Relationship between Θ and Big-O)

The following statements are equivalent:

f ∈ Θ(g)
f ∈ O(g) and g ∈ O(f)

 $\textbf{Proof.} \rightarrow \mathsf{Exercise.}$

Runtime of Algorithm in $\Theta(f(n))$?

- Only makes sense if alg. always requires Θ(f(n)) steps, i.e., both best-case and worst-case runtime are Θ(f(n))
- This is not the case in FAST-PEAK-FINDING
- However, correct to say that worst-case runtime of alg. is $\Theta(f(n))$

Big Omega-Notation:

Definition: Ω -notation ("Big Omega") Let $g : \mathbb{N} \to \mathbb{N}$ be a function. Then $\Omega(g(n))$ is the set of functions:

 $f \in \Omega(g)$: "f grows asymptotically at least as fast as g up to constants"

Lemma

The following statements are equivalent:

 $\textbf{Proof.} \rightarrow \mathsf{Exercise.}$

Examples: Big Omega

- $10n^2 \in \Omega(n)$
- $6^n \in \Omega(n^8)$
- Reverse examples for Big-O to obtain more examples

Runtime of Algorithm in $\Omega(f)$?

Only makes sense if best-case runtime is in $\Omega(f)$

Using O, Ω, Θ in Equations

Notation

- O, Ω , Θ are often used in equations
- ullet \in is then replaced by =

Examples

- $4n^3 = O(n^3)$
- n + 10 = n + O(1)
- $10n^2 + 1/n = 10n^2 + O(1)$

Observe

- Sloppy but very convenient
- When using O, Θ , Ω in equations then details get lost
- This allows us to focus on the essential part of an equation
- Not reversible! E.g., n + 10 = n + O(1) but $n + O(1) \neq n + 10...$