
Exercise Sheet 2

COMS10017 Algorithms 2020/2021

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

1 Θ and Ω

1. Prove that the following two statements are equivalent:

(a) f ∈ Θ(g) .

(b) f ∈ O(g) and g ∈ O(f) .

Solution. In order to prove that two statements are equivalent, we assume first
that the first statement holds and we deduce that the second statement then holds
as well. Then we assume that the second statement holds and we deduce that the
first statement then holds as well.

Let’s first assume that f ∈ Θ(g). This means that there are constants c1, c2, n0 such
that c1g(n) ≤ f(n) ≤ c2g(n), for every n ≥ n0.

To show that f ∈ O(g), we need to show that there are constants c, n′0 such that
f(n) ≤ cg(n), for every n ≥ n′0. This follows immediately by choosing c = c2 and
n′0 = n0 as above.

To show that g ∈ O(f), we need to show that there are constants c, n′0 such that
g(n) ≤ cf(n), for every n ≥ n′0. This follows immediately by choosing c = 1

c1
and

n ≥ n′0.

Next, we assume that f ∈ O(g) and g ∈ O(f). This implies that there are constants
c1, n1 such that f(n) ≤ c1g(n), for every n ≥ n1, and constants c2, n2 such that
g(n) ≤ c2f(n), for every n ≥ n2. We need to show that there are constants d1, d2, n0

such that d1g(n) ≤ f(n) ≤ d2g(n), for every n ≥ n0. We can chose d2 = c1, d1 = 1
c2

,
and n0 ≥ max{n1, n2}. X

2. Prove that the following two statements are equivalent:

(a) f ∈ Ω(g) .

(b) g ∈ O(f) .

Solution. Let’s first assume that f ∈ Ω(g). This means that there are constants c1, n1

such that c1g(n) ≤ f(n), for every n ≥ n1. We need to show that there are constants
c2, n2 such that g(n) ≤ c2f(n), for every n ≥ n2. We can pick c2 = 1

c1
and n2 = n1.

The reverse direction, i.e., assuming that g ∈ O(f) and deducing that f ∈ Ω(g) is very
similar. X

1

3. Let c > 1 be a constant. Prove or disprove the following statements:

(a) logc n ∈ Θ(log n).

Solution. Recall the definition of Θ: A function f(n) ∈ Θ(g(n)) if there are con-
stants c1, c2, n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n), for every n ≥ n0. Hence, we
need to find constants c1, c2, n0 such that

c1 log n ≤ logc n ≤ c2 log n ,

for every n ≥ n0. Observe that logc n = logn
log c . We can hence chose c1 = c2 = 1

log c
and n0 = 1, since c1 · log n = c2 · log n = logc n. This clearly holds for every n ≥ 1. X

(b) log(nc) ∈ Θ(log n).

Solution. Again, we need to find constants c1, c2, n0 such that

c1 log n ≤ log(nc) ≤ c2 log n ,

for every n ≥ n0. Observe that log(nc) = c log n. We can hence chose c1 = c2 = c
and n0 = 1. X

4. Let c > 2 be a constant. Prove or disprove the following statement:

2n ∈ Θ(cn) .

Solution. This statement is wrong. We will show that cn /∈ O(2n). This disproves this
statement since if f ∈ Θ(g) then g ∈ O(f) as well.

For the sake of a contradiction, suppose that cn ∈ O(2n). Then there are constants d, n0

such that
cn ≤ d · 2n ,

for every n ≥ n0. Taking logarithms on both sides, we obtain the equivalent inequality:

n log(c) ≤ log(d2n) = log(d) + n

n ≤ log(d)

log(c)− 1
.

Observe that we only obtain the last inequality since c > 2 (since c > 2 we also have

log c > 1 and log(c)− 1 > 0). This inequality hence does not hold for every n > log(d)
log(c)−1 .

This is a contradiction to the assumption that it holds for every n ≥ n0. X

2 O-notation

1. Consider the following functions:

f1 = 2
√
n, f2 = log2(20n), f3 = n!, f4 =

1

2
n2/ log(n), f5 = 4 log2(n), f6 = 2

√
logn .

Relabel the functions such that fi ∈ O(fi+1) (no need to give any proofs here).

2

Solution.

O(log2(20n)) ⊆ O(4 log2(n)) ⊆ O(2
√
logn) ⊆ O(

1

2
n2/ log(n)) ⊆ O(2

√
n) ⊆ O(n!)

Observe that log2(20n) = Θ(4 log2(n)). We could therefore also swap the positions of the
first two functions. X

2. Give functions f, g such that f(n) ∈ O(g(n)) and 2f(n) /∈ O(2g(n)).

Solution. Consider for example f(n) = log n and g(n) = 1
2 log n. Then clearly f(n) =

O(g(n)), but 2f(n) /∈ 2g(n), since 2f(n) = 2logn = n and 2g(n) = 2
1
2
logn = n

1
2 =
√
n, and

n /∈ O(
√
n). X

3 Runtime Analysis

Algorithm 1
Require: Int n ≥ 1

x← 0
for i = 1 . . . n do

for j = 1 . . . n do
x← x + i · j

end for
end for
return x

Algorithm 2
Require: Int n ≥ 1

x← 0
for i = 1 . . . n do

for j = i . . . n do
x← x + i · j

end for
end for
return x

Algorithm 3
Require: Int n ≥ 1

x← 0
i← 1
while i ≤ n do

for j = 1 . . . n do
x← x + i · j

end for
i← 2 · i

end while
return x

Algorithm 4
Require: Int n ≥ 1

x← 0
i← 1
while i ≤ n do

for j = 1 . . . i do
x← x + i · j

end for
i← 2 · i

end while
return x

Determine the runtimes of Algorithms 1,2,3 and 4 using Big “Theta” notation.

Solution.

1. Algorithm 1 runs in time Θ(n2).

2. Algorithm 2 runs in time Θ(n2):

n∑
i=1

n∑
j=i

Θ(1) = Θ

 n∑
i=1

n∑
j=i

1

 = Θ

(
n∑

i=1

n− i + 1

)
= Θ

(
n∑

i=1

(n + 1)−
n∑

i=1

i

)

= Θ

(
n(n + 1)− n(n + 1)

2

)
= Θ

(
n(n + 1)

2

)
= Θ(n2) .

3. Observe that the inner loop in Algorithm 3 always requires Θ(n) time in total. It remains
to determine how often the outer loop is executed. To this end, for j ≥ 1, let ij be the
value of i at the beginning of iteration j. Then, i1 = 1, and ij = 2 · ij−1 = 4 · ij−2 =
· · · = 2j−1. Let k be the last iteration of the loop. Then, 2k−1 ≤ n and 2k > n. We have
2k > n ⇒ k > log n, and similarly we get k − 1 ≤ log n, which implies k ≤ log(n) + 1.
We thus have the conditions: log n < k < log(n) + 1, and since k is an integer, we obtain
k = blog(n) + 1c. Hence, the outer loop is executed blog(n) + 1c times. The total runtime
is therefore Θ(n log n).

3

4. Observe that in Algorithm 4 the inner loop runs in time Θ(i). As demonstrated in the
previous exercise, the outer loop is executed blog(n) + 1c times and the variable i takes
on values 1, 2, 4, 8, . . . , 2blog(n)+1c−1. We can thus bound the runtime as follows:

Θ

blog(n)+1c−1∑
j=1

2j

 = Θ(2blog(n)+1c) = Θ(n).

X

4 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

4.1 Average Case Runtime of Linear Search

For integers k, n ≥ 1 let Sk(n) be the set of all integer arrays of length n where every array
entry is taken from the set {0, 1, 2, . . . , k − 1}.

1. What is the average case runtime of linear search on S3(n)?

2. What is the average case runtime of linear search on SC(n), for any constant C?

3. What is the average case runtime of linear search on Sn(n)?

4. What is the average case runtime of linear search on S√n(n)?

Solution. We will give an analysis for a general k below.
Similar to how we proceeded in the lecture, we will bound the average position of the left-

most 0. Observe that considering 0 instead of any of the other values 1, 2, . . . , k−1 as the target
value can be done without loss of generality due to symmetry of the problem. The position of
the left-most 0 determines the runtime in Big-O notation since the algorithm stops as soon as
a 0 is found.

This quantity can be computed as follows (observe that |Sk(n)| = kn):

AV G =
1

|Sk(n)|

((
n∑

i=1

i · (k − 1)i−1kn−i

)
+ (n + 1)(k − 1)n

)

=

(
n∑

i=1

i · (k − 1)i−1kn−i

kn

)
+ (n + 1)

(k − 1)n

kn

=

(
n∑

i=1

i · (k − 1)i−1

ki

)
︸ ︷︷ ︸

I

+(n + 1)

(
k − 1

k

)n

, (1)

where we accounted a runtime of n + 1 if the input does not contain any 0s.
We will now focus on bounding the term I by expanding the two terms I and k−1

k · I:

4

n∑
i=1

i · (k − 1)i−1

ki
= 1 · 1

k
+ 2 · k − 1

k2
+ 3 · (k − 1)2

k3
+ · · ·+ n · (k − 1)n−1

kn
,

k − 1

k
·

n∑
i=1

i · (k − 1)i−1

ki
= 1 · k − 1

k2
+ 2 · (k − 1)2

k3
+ · · ·+ (n− 1) · (k − 1)n−1

kn
+ n · (k − 1)n

kn+1
.

We next compute the first line “minus” the second and obtain:

1

k

n∑
i=1

i · (k − 1)i−1

ki
=

1

k
+

k − 1

k2
+

(k − 1)2

k3
+ · · ·+ (k − 1)n−1

kn
+ n · (k − 1)n

kn+1

=

(
1

k
·
n−1∑
i=0

(
k − 1

k

)i
)

+ n · (k − 1)n

kn+1

=
1

k
·

1− (k−1k)n

1− k−1
k

+ n · (k − 1)n

kn+1

≤ 1

k
· 1

1
k

+ n · (k − 1)n

kn+1
= 1 + n · (k − 1)n

kn+1
,

where we used the formula
∑n

k=0 r
k = 1−rn+1

1−r ≤ 1
1−r for computing a geometric series. We thus

obtained:
n∑

i=1

i · (k − 1)i−1

ki
≤ k + k · n · (k − 1)n

kn+1
.

Next, we plug this bound into Inequality 1, which yields

AV G =

(
n∑

i=1

i · (k − 1)i−1

ki

)
+ (n + 1)

(
k − 1

k

)n

≤ k + k · n · (k − 1)n

kn+1
+ (n + 1) ·

(
k − 1

k

)n

= k + n ·
(
k − 1

k

)n

+ (n + 1)

(
k − 1

k

)n

= k + (2n + 1)

(
k − 1

k

)n

.

Last, we will argue that (2n + 1) ·
(
k−1
k

)n
is small. To this end, we will use the inequality

1 + x ≤ ex, which holds for every x, and we obtain

(2n + 1) ·
(
k − 1

k

)n

≤ (2n + 1) ·
(

1− 1

k

)n

≤ (2n + 1) ·
(
e−

1
k

)n
=

2n + 1

e
n
k

.

Last, observe that e
n
k ≥ n

k holds for every value of n and k. Hence,

2n + 1

e
n
k

≤ 2n + 1
n
k

= k · 2n + 1

n
= k · (2 +

1

n
) ≤ 2k + 1 .

We thus obtain AV G ≤ k + 2k + 1 = 3k + 1 = Θ(k). X

5

