
Exercise Sheet 3

COMS10017 Algorithms 2020/2021

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

1 Warm up: Proof by Induction

Consider the following sequence: s1 = 1, s2 = 2, s3 = 3, and sn = sn−1 + sn−2 + sn−3, for every
n ≥ 4. Prove that the following holds:

sn ≤ 2n .

Solution.
Base cases: We need to verify that the statement holds for n ∈ {1, 2, 3}, since sn depends

on sn−1, sn−2, sn−3 (in particular, s4 depends on s3, s2, s1). This is easy to verify: s1 = 1 ≤
21, s2 = 2 ≤ 22 and s3 = 3 ≤ 23.

Induction Hypothesis: We complete the proof using strong induction. The induction
hypothesis is therefore as follows: For every n′ ≤ n the statement sn′ ≤ 2n

′
holds.

Induction Step: We need to show that the statement also holds for n + 1:

sn+1 = sn + sn−1 + sn−2 ≤ 2n + 2n−1 + 2n−2 = 2n−2(4 + 2 + 1) ≤ 2n−2 · 8 = 2n+1 .

X

2 Loop Invariant

Prove that the stated invariant holds throughout the execution of the loop (using the Initial-
ization, Maintenance, Termination approach discussed in the lectures):

Algorithm 1 Algorithm A
Require: Array A of length n (n ≥ 2)
1: S ← A[0]−A[1]
2: for i← 1 . . . n− 2 do
3: S ← S + A[i]−A[i + 1]
4: end for
5: return S

Invariant:

At the beginning of iteration i, S = A[0]−A[i] holds.

What does the algorithm compute?

1

Solution. Let Si be the value of S at the beginning of iteration i.

1. Initialization (i = 1): Observe that S is initialized as A[0] − A[1]. The loop invariant
claims for i = 1 that S1 = A[0]−A[1], which is thus true.

2. Maintenance: Assume that the loop invariant holds in the beginning of iteration i, i.e.,
Si = A[0] − A[i]. We need to show that Si+1 = A[0] − A[i + 1] holds. To this end,
observe that in iteration i we execute the operation Si+1 = Si + A[i] − A[i + 1]. Since
Si = A[0]−A[i], we obtain Si+1 = A[0]−A[i] + A[i]−A[i + 1] = A[0]−A[i + 1].

3. Termination: We have that after the last iteration (or before the n− 1th iteration that is
never executed) S = A[0]−A[n−1]. The algorithm thus computes the value A[0]−A[n−1].

X

3 Insertionsort

What is the runtime (in Θ-notation) of Insertionsort when executed on the following arrays of
lengths n:

1. 1, 2, 3, 4, . . . , n− 1, n

Solution. The runtime is Θ(n) since the inner loop of Insertionsort always requires time
Θ(1) on this instance (no moves are needed). X

2. n, n− 1, n− 2, . . . , 2, 1

Solution. The runtime is Θ(n2). An easy way to see this is as follows: Consider the last
n/2 elements of the input array. Each of these elements is moved at least n/2 positions
to the left, i.e., the inner loop requires time Θ(n) for each of these elements. The total
runtime is therefore Ω(n2 ·

n
2) = Ω(n2). Since the runtime of Insertionsort is O(n2) on any

instance, the runtime has to be Θ(n2). X

3. The array A such that A[i] = 1 if i ∈ {1, 2, 4, 8, 16, . . . } (i.e., when i is a power of two)
and A[i] = i otherwise.

Solution. Observe that Insertionsort does not move any of the elements (i.e., executes
the inner loop) that are outside the positions i ∈ {1, 2, 4, 8, 16, . . . }. We thus only need
to count the number of iterations of the inner loop for these positions. Observe further
that the element at position 2j , for some integer j, is moved at most 2j steps to the
left. Furthermore, we have that 2dlogne ≥ 2logn = n. Hence, there are at most dlog ne
positions in A with value 1. The total number of iterations the inner loop of Insertionsort
is executed is therefore at most:

dlogne∑
j=0

2j = 2dlogne+1 − 1 ≤ 2logn+2 − 1 = 4n− 1 = Θ(n) .

Here we used the inequality dlog ne ≤ log(n) + 1, and the formula
∑k

j=0 2j = 2k+1 − 1.

The runtime therefore is Θ(n). X

2

4 Mergesort

The Mergesort algorithm uses the Merge operation, which assumes that the left and the
right halves of an array A are already sorted, and merges these two halves so that A is sorted
afterwards. The runtime of this operation is O(n).

Suppose that we replaced the Merge operation in our Mergesort algorithm with a less
efficient implementation that runs in time O(n2) (instead of O(n)). What is the runtime of our
modified Mergesort algorithm?

Solution. Similar to the analysis in the lecture, we sum up the work in each level of the
recursion tree. In level i, there are at most 2i−1 nodes, and the arrays in level i are of lengths
at most d n

2i−1 e. The runtime in level i on a single node is then O(d n
2i−1 e2) = O(n2

22(i−1)). We
thus obtain:

dlogne+1∑
i=1

2i−1O(
n2

22(i−1)
) =

dlogne+1∑
i=1

O(
n2

2i−1
) = O(n2)

dlogne+1∑
i=1

1

2i−1
≤ O(n2) · 2 = O(n2) ,

where we used the geometric series
∑∞

i=0
1
2i

= 2. X

5 Runtime Analysis

Algorithm 2

Require: Integer n ≥ 2
x← 0
i← n
while i ≥ 2 do

j ← dn1/4e · i
while j ≥ i do
x← x + 1
j ← j − 10

end while
i← bi/

√
nc

end while
return x

Determine the runtime of Algorithm 3 in Θ-notation.

Solution. Let us first determine the number of times x the inner loop is executed. The value
of j evolves as follows:

dn1/4e · i, dn1/4e · i− 10, dn1/4e · i− 20, . . .

until it reaches a value that is smaller than i. We thus have dn1/4e · i− x · 10 < i which yields
(dn1/4e−1)·i

10 < x and thus implies x = Θ(n1/4i).

3

Next, concerning the outer loop, we see that the parameter i evolves as follows (disregarding
the floor operation): n, n/

√
n =
√
n, 1. In fact, the iteration with i = 1 is never executed. The

inner loop is thus executed only twice. The overall runtime therefore is:

Θ(n1/4n) + Θ(n1/4√n)+ = Θ(n5/4)

i.e., the runtime is dominated by the first iteration of the outer loop. X

4

