Exercise Sheet 5
COMS10017 Algorithms 2020/2021

1 Heap Sort

Consider the following array A:

4]3]9]10]14]8]7]2]1]7]

1. Interpret A as a binary tree as in the lecture (on heaps).

Solution.

v

2. Run Create-Heap() on the initial array. Give the sequence of node exchanges. Draw the
resulting heap.

Solution. The resulting heap looks as follows:

The sequence of node exchanges are: 14 <> 3,3+ 7,4 < 14,4 < 10 v

3. What is the worst-case runtime of Heapify()?

Solution. As discussed in the lecture, Heapify() runs in time O(logn). This corresponds
to the maximum height of a complete binary tree on n elements. v

4. Explain how heap sort uses the heap for sorting. Explain why the algorithm has a worst-
case runtime of O(nlogn).

Solution. See lecture. v

2 Merge Sort

Illustrate how the Mergesort algorithm sorts the following array using a recursion tree:

1 7 2 5 9 6 1

Solution.

[——————————————————————————————————

|
I |
| 11725961 !
I |
|
| ¥ O\ i
| 11725 961 i
|
I |
I |
l / ¥ ¢ \ | Divide phase
| 117 25 96 1 :
| |
I |
I |
I |
! |
I |
|
! i

| |
| |
| |
711 25 69 |
| |
| |
! \ / ¢ i Combine phase
|

I 25711 169 l
I I
| |
I \ / I
: :
: 12567911 :
| |
| |

3 Quick Sort

Consider an array A of length n so that A[i] = n —i. For example, for n = 10 we are given the
following array:
A=10 9 8 7 6 5 4 3 2 1.

The goal is to sort A in non-decreasing order which in this case is equivalent to reversing it.
The pivot plays a central role in Quicksort. Consider the following options as a choice for the
pivot:

1. The right-most position.
2. The element at position [n/2].
3. The left-most position.

For each of these options, what is the runtime of Quicksort on A? State your answers using
©(.)-notation. Justify your answers.

Solution.

1. In this case, the pivot is always the smallest element of the subarray. Every array of length
k considered is then split into an array of length k — 1, the pivot, and an empty array.
This yields a runtime of ©(n?).

2. This is a very good split as every array of length £ is split roughly two equal halves. This
yields a runtime of O(nlogn).

3. Similar to the first case, this leads to one empty subarray. The runtime is therefore ©(n?).

v

4 Circularly Shifted Arrays

Suppose you are given an array A of length n of distinct (all integers are different) sorted inte-
gers that has been circularly shifted by k positions to the right. For example, [35,42,5, 15,27, 29]
is a sorted array that has been circularly shifted by k& = 2 positions, while [27,29, 35,42, 5, 15]
has been shifted by k = 4 positions. Describe an O(logn) time algorithm that allows us to find
the maximum element.

Solution. Before we state our algorithm we discuss a property of circularly shifted sorted
arrays:

For 0 < ¢ < n — 1, observe that A[(¢ + 1) mod n|] < Alg] holds if and only if Alq] is
the maximum in A. Hence, for a given position g, we can check in time O(1) whether Ag]
constitutes the maximum.

Our algorithm is similar to a binary search. This can be implemented as follows:

1. We initialize £ = 0 and » = n — 1 and we will make sure that the maximum will be in the
subarray A[¢,r]. This is trivially true after this initialization.

2. In each step of the binary search, we inspect the element in the middle between ¢ and
r, i.e., at position p = L“‘%j First, we check in time O(1) whether A[p| constitutes the
maximum. If it does then we are done. Otherwise, we compare A[/] to A[q]. If A[¢] > A[q]
then we know that the maximum must be contained in A[/,q — 1]. We then set r = ¢ — 1
and we repeat the binary search step. If A[¢] < Alg| then the maximum is necessarily
located in Alg + 1,7]. We then set £ = g+ 1 and repeat the binary search step.

v

5 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

5.1 Closest Pair of Points (hard!)

The input consists of two arrays of n real numbers X, Y and represent n points with coordinates
(X0, Y[0]), (X[1],Y[1]),...,(X[n—1],Y[n—1]). Give a divide-and-conquer algorithm that finds
the pair of points that are closest to each other, i.e., the output consists of a two indices 1, j
such that (X[éi],Y[:]) and (X[j],Y[j]) are the two closest points.

Hint: This algorithm is similar to the algorithm given for the Maximum Subarray problem.
The combine step is tricky here. It is easy to give a combine step that runs in O(n?) time. How
can we get a combine step that runs in O(n) time?

