Exercise Sheet 5 COMS10017 Algorithms 2020/2021

1 Heap Sort

Consider the following array A:

4 3 9 10 14 8 7 2 1 7

- 1. Interpret A as a binary tree as in the lecture (on heaps).
- 2. Run Create-Heap() on the initial array. Give the sequence of node exchanges. Draw the resulting heap.
- 3. What is the worst-case runtime of Heapify()?
- 4. Explain how heap sort uses the heap for sorting. Explain why the algorithm has a worstcase runtime of $O(n \log n)$.

2 Merge Sort

Illustrate how the Mergesort algorithm sorts the following array using a recursion tree:

 $11 \ 7 \ 2 \ 5 \ 9 \ 6 \ 1$

3 Quick Sort

Consider an array A of length n so that A[i] = n - i. For example, for n = 10 we are given the following array:

 $A = 10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \; .$

The goal is to sort A in non-decreasing order which in this case is equivalent to reversing it. The pivot plays a central role in Quicksort. Consider the following options as a choice for the pivot:

- 1. The right-most position.
- 2. The element at position $\lceil n/2 \rceil$.
- 3. The left-most position.

For each of these options, what is the runtime of Quicksort on A? State your answers using $\Theta(.)$ -notation. Justify your answers.

4 Circularly Shifted Arrays

Suppose you are given an array A of length n of **distinct** (all integers are different) sorted integers that has been circularly shifted by k positions to the right. For example, [35, 42, 5, 15, 27, 29] is a sorted array that has been circularly shifted by k = 2 positions, while [27, 29, 35, 42, 5, 15] has been shifted by k = 4 positions. Describe an $O(\log n)$ time algorithm that allows us to find the maximum element.

5 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

5.1 Closest Pair of Points (hard!)

The input consists of two arrays of n real numbers X, Y and represent n points with coordinates $(X[0], Y[0]), (X[1], Y[1]), \ldots, (X[n-1], Y[n-1])$. Give a divide-and-conquer algorithm that finds the pair of points that are closest to each other, i.e., the output consists of a two indices i, j such that (X[i], Y[i]) and (X[j], Y[j]) are the two closest points.

Hint: This algorithm is similar to the algorithm given for the Maximum Subarray problem. The combine step is tricky here. It is easy to give a combine step that runs in $O(n^2)$ time. How can we get a combine step that runs in O(n) time?