
Exercise Sheet 6

COMS10017 Algorithms 2020/2021

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

1 Big-O Notation

Rank the following functions by order of growth: (no proof needed)

(
√

2)logn, n2, n!, (log n)!, (
3

2
)n, n3, log2 n, log(n!), 22

n
, n log n

Hint: Stirling’s approximation for the factorial function can be helpful:

e(
n

e
)n ≤ n! ≤ en(

n

e
)n

Solution.

O(log2 n) ⊆ O((
√

2)logn) ⊆ O(log(n!)) ⊆ O(n log n) ⊆ O(n2)

⊆ O(n3) ⊆ O((log(n))!) ⊆ O((
3

2
)n) ⊆ O(n!) ⊆ O(22

n
)

X

2 Decision Trees

1. Give a lower bound on the number of queries needed for sorting 4 elements.

Solution. At least 5 queries are needed. There are 4! = 24 possible permutations, which
correspond to the leaves in a decision tree. Any binary tree with 24 leaves has a height of
at least 6. A root-to-leaf path of length 6 visits at least 5 internal nodes, which correspond
to the number of queries. X

2. Give an optimal decision tree/guessing strategy for sorting 4 elements a, b, c, d (draw the
decision tree).

Solution.

1



X

3. How many comparisons does the Insertionsort algorithm make in the worst case when
sorting an array of length 4?

Solution. In the worst case it makes 6 comparisons: In the worst case i comparisons
are needed for inserting the element A[i] into the already sorted prefix. Hence, we need
1 + 2 + 3 = 6 comparisons. X

3 kth Smallest Element

Give an algorithm that runs in time O(n+ k log n) that computes the kth largest number in an
array of n distinct integers.

Hint: Think about Heapsort!

Solution. In Heapsort, we can construct the tree in time O(n). Then, we can run the first
k steps of the Heapsort algorithm, which places the k largest elements at the end of the array.
Each step of the sorting takes time O(log n) (which comes from the Heapify() operation). The
total runtime therefore is O(n + k log n). X

4 Sorting

We are given an array A with n + m elements so that the first n elements are sorted and the
last m elements are unsorted.

1. What is the runtime of Insertionsort on array A?

Solution. O(m(n + m)). X

2. Suppose that m = O(1). How can we sort A as efficiently as possible and what is the
resulting runtime?

Solution. We can run Insertionsort on the unsorted elements. This would then take
time O(n). X

3. Suppose that m = O(
√
n). How can we sort A as efficiently as possible and what is the

resulting runtime?

2



Solution. We can run any O(m logm) sorting algorithm in order to sort the unsorted
elements first. Then, we merge the two sorted parts in time O(n+m), resulting in a sorting
algoirthm that runs in time O(m log(m) +n+m) = O(n+m logm). If m = O(

√
n), then

the final runtime is O(n). X

4. What is the largest value of m so that we can obtain a runtime of O(n)?

Solution. According to the previous exercise, the runtime is O(m log(m)+n). We need
to identify the largest value for m such that O(m log(m) + n) = O(n). This is equivalent
to choosing the largest m such that O(m logm) = O(n).

First, suppose that m = Θ(n/ log(n)). Then:

m logm = O(n/ log(n) · log(n/ log(n)))

= O(n/ log(n) · (log(n)− log log(n)))

= O(n + n log log(n)/ log(n)) = O(n) ,

since both n and n log log(n)/ log(n) are in O(n).

Next, suppose that m ∈ O(n) if m = Θ(f(n)n/ log(n)), for some growing (superconstant)
function f . Then:

m logm = O(f(n)n/ log(n) · log(f(n)n/ log(n)))

= O(f(n)n/ log(n) · (f(n) + log(n)− log log(n)))

= O((f(n))2n/ log(n) + f(n)n + f(n)n log log(n)/ log(n)) /∈ O(n) ,

since f(n)n /∈ O(n) (since f(n) is increasing with n and hence superconstant). This
implies that the largest m is in Θ(n/ log n). X

5. Suppose that m = Θ(n). How can we sort A as efficiently as possible and what is the
resulting runtime?

Solution. We can use any O(n log n) time sorting algorithm to obtain a total runtime
of O(n log n). X

5 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

5.1 A Different Type of Sorting Algorithm

Consider the following algorithm for sorting an array A of size n:

1. Sort recursively the first 2/3 of A, i.e., A[0, . . . , 2/3n− 1]

2. Sort recursively the last 2/3 of A, i.e., A[n/3− 1, n− 1]

3. Sort recursively the first 2/3 of A, i.e., A[0, . . . , 2/3n− 1]

Answer the following questions:

1. Argue/prove that the algorithm really sorts A.

2. What is the runtime of A?

3


