Exercise Sheet 7 COMS10017 Algorithms 2020/2021

Reminder: $\log n$ denotes the binary logarithm, i.e., $\log n = \log_2 n$.

1 Countingsort and Radixsort

1. Illustrate how Countingsort sorts the following array:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	2
---	---	---

 \checkmark

 \checkmark

Solution. See lectures.

2. Illustrate how Radixsort sorts the following binary numbers:

 $100110 \quad 101010 \quad 001010 \quad 010111 \quad 100000 \quad 000101$

Solution.

100110	10011 0	1000 0 0	100 0 00	100000	100000	0 00101
101010	10101 0	0001 0 1	101 0 10	00 0 101	0 0 0101	0 01010
001010	00101 0	1001 1 0	001 0 10	10 0 110	1 0 0110	0 10111
$010111 \rightarrow$	10000 0	→ 1010 1 0	000 1 01	→ 01 0 111 -	1 0 1010	\rightarrow 1 00000
100000	01011 1	0010 1 0	100 1 10	101010	0 0 1010	100110
000101	00010 1	0101 1 1	010 1 11	00 1 010	0 1 0111	101010

3. Radixsort sorts an array A of length n consisting of d-digit numbers where each digit is from the set $\{0, 1, \ldots, b\}$ in time O(d(n+b)).

We are given an array A of n integers where each integer is polynomially bounded, i.e., each integer is from the range $\{0, 1, \ldots, n^c\}$, for some constant c. Argue that Radixsort can be used to sort A in time O(n).

Hint: Find a suitable representation of the numbers in $\{0, 1, ..., n^c\}$ as *d*-digit numbers where each digit comes from a set $\{0, 1, ..., b\}$ so that Radixsort runs in time O(n). How do you chose *d* and *b*?

Solution. We encode the numbers in A using digits from the set $\{0, 1, \ldots, n-1\}$, i.e., we set b = n-1. To be able to encode all numbers in the range $\{0, 1, \ldots, n^c\}$ it is required that $(b+1)^d \ge n^c + 1$ (we can encode $(b+1)^d$ different numbers using d digits where each digit comes from a set of cardinality b+1, and the cardinality of the set $\{0, 1, \ldots, n^c\}$ is $n^c + 1$). Since $(b+1)^d = n^d$, we can set d = c + 1, since

$$n^{c+1} \ge n^c + 1$$

holds for every $n \ge 2$ (assuming that $c \ge 1$). The runtime then is

$$O(d(n+b)) = O((c+1)(n+(n-1))) = O((c+1)2n) = O(n)$$

since 2 and c + 1 are both constants.

2 Recurrences: Substitution Method

1. Consider the following recurrence:

$$T(1) = 1$$
 and $T(n) = T(n-1) + n$

Show that $T(n) \in O(n^2)$ using the substitution method.

Solution. We need to show that $T(n) \leq C \cdot n^2$, for some suitable constant C. To this end, we first plug our guess into the recurrence:

$$T(n) = T(n-1) + n \le C(n-1)^2 + n$$
.

It is required that $C(n-1)^2 + n \le Cn^2$:

$$C(n-1)^{2} + n \leq Cn^{2}$$

$$C(n^{2} - 2n + 1) + n \leq Cn^{2}$$

$$C - 2Cn + n \leq 0$$

$$C(1 - 2n) \leq -n$$

$$C \geq \frac{n}{2n - 1}.$$

Observe that $\frac{n}{2n-1} \leq 1$ holds for every $n \geq 1$. Our guess thus holds for every $C \geq 1$.

It remains to verify the base case. We have T(1) = 1 and $C1^2 = C$. Hence, $C1^2 \leq T(1)$ holds for every $C \geq 1$. We thus choose C = 1.

We have shown that $T(n) \leq Cn^2 = n^2$ holds for every $n \geq 1$. This implies that $T(n) = O(n^2)$.

2. Consider the following recurrence:

$$T(1) = 1$$
 and $T(n) = T(\lceil n/2 \rceil) + 1$

Show that $T(n) \in O(\log n)$ using the substitution method. *Hint:* Use the inequality $\lceil n/2 \rceil \leq \frac{n}{\sqrt{2}} = \frac{n}{2^{\frac{1}{2}}}$, which holds for all $n \geq 2$. Use n = 2 as your base case.

 \checkmark

Solution. We need to show that $T(n) \leq C \cdot \log n$, for a suitable constant C. To this end, we plug our guess into the recurrence:

$$T(n) = T(\lceil n/2 \rceil) + 1$$

$$\leq C \cdot \log(\lceil n/2 \rceil) + 1$$

$$\leq C \cdot \log\left(\frac{n}{\sqrt{2}}\right) + 1$$

$$= C \log(n) - C \cdot \frac{1}{2} \log(2) + 1$$

$$= C \log(n) - \frac{1}{2}C + 1 ,$$

1

where we used the inequality $\lceil n/2 \rceil \leq \frac{n}{\sqrt{2}}$. It is required that $C \log(n) - \frac{1}{2}C + 1 \leq C \log(n)$:

$$C\log(n) - \frac{1}{2}C + 1 \leq C\log(n)$$

$$1 \leq \frac{1}{2}C$$

$$2 \leq C.$$

The "induction step" part of the proof thus works for any $C \ge 2$. Regarding the base case, we will consider n = 2. We have:

$$T(2) = T(1) + 1 = 2$$
.

We thus need to show that $2 \leq C \log 2$. This holds for every $C \geq 2$. We can thus pick the value C = 2. This proves that $T(n) \in O(\log n)$.

3 Search in a Sorted Matrix (Difficult!)

We are given an n-by-n integer matrix A that is sorted both row- and column-wise, i.e., every row is sorted in non-decreasing order from left to right, and every column is sorted in nondecreasing order from top to bottom. Give a divide-and-conquer algorithm that answers the question:

"Given an integer x, does A contain x?"

What is the runtime of your algorithm?

Solution. For simplicity, we assume that n is a power of two in this solution. We define the following submatrices of matrix A:

$$A_{11} = A[0 \dots \frac{n}{2} - 1, 0 \dots \frac{n}{2} - 1]$$

$$A_{21} = A[\frac{n}{2} \dots n - 1, 0 \dots \frac{n}{2} - 1]$$

$$A_{12} = A[0 \dots \frac{n}{2} - 1, \frac{n}{2} \dots n - 1]$$

$$A_{22} = A[\frac{n}{2} \dots n - 1, \frac{n}{2} \dots n - 1]$$

Observe that the dimensions of all submatrices are $n/2 \times n/2$.

We first check whether $A_{\frac{n}{2}-1,\frac{n}{2}-1} = x$. If this is the case then we have found x and we are done. Otherwise, we distinguish the following two cases:

- 1. Suppose that $A_{\frac{n}{2}-1,\frac{n}{2}-1} < x$ holds. Then, since A is sorted in both column and row order, it is not hard to see that x is not contained in A_{11} . We then invoke our algorithm recursively and search for x in the three submatrices A_{12}, A_{21}, A_{22} .
- 2. Suppose that $A_{\frac{n}{2}-1,\frac{n}{2}-1} > x$ holds. Then, similar as before, it is not hard to see that x is not contained in A_{22} . We then invoke our algorithm recursively and search for x in the three submatrices A_{11}, A_{12}, A_{21} .

Observe that the proposed algorithm is a recursive algorithm. We thus need to decide what to do if the input to a recursive call is a 1×1 matrix. In this case we simply check whether the single element in the matrix equals x in O(1) time.

Let T(n) be the runtime of the algorithm when executed on an input array of dimension $n \times n$. We thus obtain the following recurrence:

$$T(n) = \begin{cases} O(1) , & \text{if } n = 1, \\ 3T(n/2) + O(1) , & \text{otherwise.} \end{cases}$$

It remains to solve the recurrence T(n). First, we eliminate the O(1) terms and replace them with a large enough constant C:

$$T(n) = \begin{cases} C , & \text{if } n = 1, \\ 3T(n/2) + C , & \text{otherwise.} \end{cases}$$

Our recursion is simple enough to obtain a solution via the recursion tree method. In the lecture, we used the recursion tree method in order to obtain a guess the we then verified using the substitution method. The recursion here is however simple enough to conduct a complete analysis using the recursion tree.

From the recursion tree, we see that the tree has $\log(n) + 1$ levels. Denoting the root of the tree as level 0, we see that level i has 3^i nodes. Furthermore, every node is labeled by C. The total work therefore is:

$$\begin{split} \sum_{i=0}^{\log n} 3^i C &= C \cdot \sum_{i=0}^{\log n} 3^i = C \cdot \frac{3^{\log(n)+1} - 1}{3 - 1} \\ &= \frac{C}{2} \cdot \left(2^{\log(3)\log(n) + \log(3)} - 1 \right) \le \frac{C}{2} \cdot \left(2^{\log(3)\log(n) + \log(3)} \right) \\ &= \frac{C}{2} \cdot \left(n^{\log 3} \cdot 3 \right) = O(n^{\log 3}) \approx O(n^{1.5849...}) \;. \end{split}$$

We used the formula $\sum_{i=0}^{k} x^{i} = \frac{x^{k+1}-1}{x-1}$ in this calculation. Last, I would like to mention that there exists a solution to this problem that runs in time O(n). Can you think of such a solution?

Loop Invariant for Radixsort 4

Radixsort is defined as follows:

Require: Array A of length n consisting of d-digit numbers where each digit is taken from the set $\{0, 1, \ldots, b\}$ 1: for i = 1, ..., d do Use a stable sort algorithm to sort array A on digit i2: 3: end for

(least significant digit is digit 1)

In this exercise we prove correctness of Radixsort via the following loop invariant:

At the beginning of iteration i of the for-loop, i.e., after i has been updated in Line 1 but Line 2 has not yet been executed, the following holds:

The integers in A are sorted with respect to their last i - 1 digits.

1. Initialization: Argue that the loop-invariant holds for i = 1.

Solution. In the beginning of the iteration with i = 1 the loop-invariant states that the integers in A are sorted with respect to their last i - 1 = 0 digits. This is trivially true. \checkmark

2. Maintenance: Suppose that the loop-invariant is true for some i. Show that it then also holds for i + 1.

Hint: You need to use the fact that the employed sorting algorithm as a subroutine is stable.

Solution. Suppose that the integers in A are sorted with respect to their last i-1 digits at the beginning of iteration i. We will show that at the beginning of iteration i+1 the integers are sorted with respect to their last i digits.

Let A_{i+1} be the state of A in the beginning of iteration i+1. For an integer x, let $x^{(i)}$ be the integer obtained by removing all but the last i digits from x. Suppose for the sake of a contradiction that there are indices j, k with j < k such that $(A_{i+1}[j])^{(i)} > (A_{i+1}[k])^{(i)}$. If such integers exist then the loop invariant would not hold. We will show that assuming that these integers exist leads to a contradiction.

First, suppose that digit *i* of $(A_{i+1}[j])^{(i)}$ and digit *i* of $(A_{i+1}[k])^{(i)}$ are identical. Note that this implies $(A_{i+1}[j])^{(i-1)} > (A_{i+1}[k])^{(i-1)}$. Observe that in iteration *i*, the digits are sorted with respect to digit *i*. Since the subroutine employed in Radixsort is a stable sort algorithm, the relative order of the two numbers has not changed since their *i*th digits are identical. This implies that the relative order of the two numbers was the same at the beginning of iteration *i*. This is a contradiction, since the loop invariant at the beginning of iteration *i* states that the digits are sorted with respect to their i-1 last digits, however, $(A_{i+1}[j])^{(i-1)} > (A_{i+1}[k])^{(i-1)}$ holds.

Next, suppose that digit *i* of $(A_{i+1}[j])^{(i)}$ and digit *i* of $(A_{i+1}[k])^{(i)}$ are different. Then, since $(A_{i+1}[j])^{(i)} > (A_{i+1}[k])^{(i)}$ we have that digit *i* of $(A_{i+1}[j])^{(i)}$ is necessarily larger than digit *i* of $(A_{i+1}[k])^{(i)}$. This however is a contradiction to the fact that the numbers were sorted with respect to their *i*th digit in iteration *i*.

Hence, the assumption that there are indices j, k such that $(A_{i+1}[j])^{(i)} > (A_{i+1}[k])^{(i)}$ is wrong. If no such indices exist then the integers in A are sorted with respect to their last i digits at the beginning of iteration i + 1.

3. Termination: Use the loop-invariant to conclude that A is sorted after the execution of the algorithm.

Solution. After iteration d (or before iteration d + 1, which is never executed), the invariant states that the numbers in A are sorted with respect to their last d digits, which simply means that all numbers are now sorted with regards to all their digits. \checkmark