
Exercise Sheet 7

COMS10017 Algorithms 2020/2021

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

1 Countingsort and Radixsort

1. Illustrate how Countingsort sorts the following array:

4 2 2 0 1 4 2

Solution. See lectures. X

2. Illustrate how Radixsort sorts the following binary numbers:

100110 101010 001010 010111 100000 000101

Solution.

100110
101010
001010
010111
100000
000101

→

100110
101010
001010
100000
010111
000101

→

100000
000101
100110
101010
001010
010111

→

100000
101010
001010
000101
100110
010111

→

100000
000101
100110
010111
101010
001010

→

100000
000101
100110
101010
001010
010111

→

000101
001010
010111
100000
100110
101010

X

3. Radixsort sorts an array A of length n consisting of d-digit numbers where each digit is
from the set {0, 1, . . . , b} in time O(d(n + b)).

We are given an array A of n integers where each integer is polynomially bounded, i.e.,
each integer is from the range {0, 1, . . . , nc}, for some constant c. Argue that Radixsort
can be used to sort A in time O(n).

Hint: Find a suitable representation of the numbers in {0, 1, . . . , nc} as d-digit numbers
where each digit comes from a set {0, 1, . . . , b} so that Radixsort runs in time O(n). How
do you chose d and b?

1



Solution. We encode the numbers in A using digits from the set {0, 1, . . . , n− 1}, i.e.,
we set b = n−1. To be able to encode all numbers in the range {0, 1, . . . , nc} it is required
that (b+ 1)d ≥ nc + 1 (we can encode (b+ 1)d different numbers using d digits where each
digit comes from a set of cardinality b + 1, and the cardinality of the set {0, 1, . . . , nc} is
nc + 1). Since (b + 1)d = nd, we can set d = c + 1, since

nc+1 ≥ nc + 1

holds for every n ≥ 2 (assuming that c ≥ 1). The runtime then is

O(d(n + b)) = O((c + 1)(n + (n− 1))) = O((c + 1)2n) = O(n) ,

since 2 and c + 1 are both constants. X

2 Recurrences: Substitution Method

1. Consider the following recurrence:

T (1) = 1 and T (n) = T (n− 1) + n

Show that T (n) ∈ O(n2) using the substitution method.

Solution. We need to show that T (n) ≤ C · n2, for some suitable constant C. To this
end, we first plug our guess into the recurrence:

T (n) = T (n− 1) + n ≤ C(n− 1)2 + n .

It is required that C(n− 1)2 + n ≤ Cn2:

C(n− 1)2 + n ≤ Cn2

C(n2 − 2n + 1) + n ≤ Cn2

C − 2Cn + n ≤ 0

C(1− 2n) ≤ −n

C ≥ n

2n− 1
.

Observe that n
2n−1 ≤ 1 holds for every n ≥ 1. Our guess thus holds for every C ≥ 1.

It remains to verify the base case. We have T (1) = 1 and C12 = C. Hence, C12 ≤ T (1)
holds for every C ≥ 1. We thus choose C = 1.

We have shown that T (n) ≤ Cn2 = n2 holds for every n ≥ 1. This implies that T (n) =
O(n2). X

2. Consider the following recurrence:

T (1) = 1 and T (n) = T (dn/2e) + 1

Show that T (n) ∈ O(log n) using the substitution method.

Hint: Use the inequality dn/2e ≤ n√
2

= n

2
1
2

, which holds for all n ≥ 2. Use n = 2 as your

base case.

2



Solution. We need to show that T (n) ≤ C · log n, for a suitable constant C. To this
end, we plug our guess into the recurrence:

T (n) = T (dn/2e) + 1

≤ C · log (dn/2e) + 1

≤ C · log

(
n√
2

)
+ 1

= C log(n)− C · 1

2
log(2) + 1

= C log(n)− 1

2
C + 1 ,

where we used the inequality dn/2e ≤ n√
2
. It is required that C log(n)− 1

2C+1 ≤ C log(n):

C log(n)− 1

2
C + 1 ≤ C log(n)

1 ≤ 1

2
C

2 ≤ C .

The “induction step” part of the proof thus works for any C ≥ 2. Regarding the base
case, we will consider n = 2. We have:

T (2) = T (1) + 1 = 2 .

We thus need to show that 2 ≤ C log 2. This holds for every C ≥ 2. We can thus pick the
value C = 2. This proves that T (n) ∈ O(log n). X

3 Search in a Sorted Matrix (Difficult!)

We are given an n-by-n integer matrix A that is sorted both row- and column-wise, i.e., every
row is sorted in non-decreasing order from left to right, and every column is sorted in non-
decreasing order from top to bottom. Give a divide-and-conquer algorithm that answers the
question:

“Given an integer x, does A contain x?”

What is the runtime of your algorithm?

Solution. For simplicity, we assume that n is a power of two in this solution. We define the
following submatrices of matrix A:

A11 = A[0 . . .
n

2
− 1, 0 . . .

n

2
− 1]

A21 = A[
n

2
. . . n− 1, 0 . . .

n

2
− 1]

A12 = A[0 . . .
n

2
− 1,

n

2
. . . n− 1]

A22 = A[
n

2
. . . n− 1,

n

2
. . . n− 1]

Observe that the dimensions of all submatrices are n/2× n/2.
We first check whether An

2
−1,n

2
−1 = x. If this is the case then we have found x and we are

done. Otherwise, we distinguish the following two cases:

3



1. Suppose that An
2
−1,n

2
−1 < x holds. Then, since A is sorted in both column and row

order, it is not hard to see that x is not contained in A11. We then invoke our algorithm
recursively and search for x in the three submatrices A12, A21, A22.

2. Suppose that An
2
−1,n

2
−1 > x holds. Then, similar as before, it is not hard to see that x is

not contained in A22. We then invoke our algorithm recursively and search for x in the
three submatrices A11, A12, A21.

Observe that the proposed algorithm is a recursive algorithm. We thus need to decide what to
do if the input to a recursive call is a 1 × 1 matrix. In this case we simply check whether the
single element in the matrix equals x in O(1) time.

Let T (n) be the runtime of the algorithm when executed on an input array of dimension
n× n. We thus obtain the following recurrence:

T (n) =

{
O(1) , if n = 1,

3T (n/2) + O(1) , otherwise.

It remains to solve the recurrence T (n). First, we eliminate the O(1) terms and replace
them with a large enough constant C:

T (n) =

{
C , if n = 1,

3T (n/2) + C , otherwise.

Our recursion is simple enough to obtain a solution via the recursion tree method. In the
lecture, we used the recursion tree method in order to obtain a guess the we then verified using
the substitution method. The recursion here is however simple enough to conduct a complete
analysis using the recursion tree.

From the recursion tree, we see that the tree has log(n) + 1 levels. Denoting the root of the
tree as level 0, we see that level i has 3i nodes. Furthermore, every node is labeled by C. The
total work therefore is:

logn∑
i=0

3iC = C ·
logn∑
i=0

3i = C · 3log(n)+1 − 1

3− 1

=
C

2
·
(

2log(3) log(n)+log(3) − 1
)
≤ C

2
·
(

2log(3) log(n)+log(3)
)

=
C

2
·
(
nlog 3 · 3

)
= O(nlog 3) ≈ O(n1.5849...) .

We used the formula
∑k

i=0 x
i = xk+1−1

x−1 in this calculation.
Last, I would like to mention that there exists a solution to this problem that runs in time

O(n). Can you think of such a solution? X

4 Loop Invariant for Radixsort

Radixsort is defined as follows:

Require: Array A of length n consisting of d-digit numbers where each digit
is taken from the set {0, 1, . . . , b}

1: for i = 1, . . . , d do
2: Use a stable sort algorithm to sort array A on digit i
3: end for

(least significant digit is digit 1)

4



In this exercise we prove correctness of Radixsort via the following loop invariant:
At the beginning of iteration i of the for-loop, i.e., after i has been updated in Line 1 but

Line 2 has not yet been executed, the following holds:

The integers in A are sorted with respect to their last i− 1 digits.

1. Initialization: Argue that the loop-invariant holds for i = 1.

Solution. In the beginning of the iteration with i = 1 the loop-invariant states that the
integers in A are sorted with respect to their last i−1 = 0 digits. This is trivially true. X

2. Maintenance: Suppose that the loop-invariant is true for some i. Show that it then also
holds for i + 1.

Hint: You need to use the fact that the employed sorting algorithm as a subroutine is
stable.

Solution. Suppose that the integers in A are sorted with respect to their last i−1 digits
at the beginning of iteration i. We will show that at the beginning of iteration i + 1 the
intergers are sorted with respect to their last i digits.

Let Ai+1 be the state of A in the beginning of iteration i+ 1. For an integer x, let x(i) be
the integer obtained by removing all but the last i digits from x. Suppose for the sake of
a contradiction that there are indices j, k with j < k such that (Ai+1[j])

(i) > (Ai+1[k])(i).
If such integers exist then the loop invariant would not hold. We will show that assuming
that these integers exist leads to a contradiction.

First, suppose that digit i of (Ai+1[j])
(i) and digit i of (Ai+1[k])(i) are identical. Note

that this implies (Ai+1[j])
(i−1) > (Ai+1[k])(i−1). Observe that in iteration i, the digits are

sorted with respect to digit i. Since the subroutine employed in Radixsort is a stable sort
algorithm, the relative order of the two numbers has not changed since their ith digits are
identical. This implies that the relative order of the two numbers was the same at the
beginning of iteration i. This is a contradiction, since the loop invariant at the beginning
of iteration i states that the digits are sorted with respect to their i−1 last digits, however,
(Ai+1[j])

(i−1) > (Ai+1[k])(i−1) holds.

Next, suppose that digit i of (Ai+1[j])
(i) and digit i of (Ai+1[k])(i) are different. Then,

since (Ai+1[j])
(i) > (Ai+1[k])(i) we have that digit i of (Ai+1[j])

(i) is necessarily larger
than digit i of (Ai+1[k])(i). This however is a contradiction to the fact that the numbers
were sorted with respect to their ith digit in iteration i.

Hence, the assumption that there are indices j, k such that (Ai+1[j])
(i) > (Ai+1[k])(i) is

wrong. If no such indices exist then the integers in A are sorted with respect to their last
i digits at the beginning of iteration i + 1. X

3. Termination: Use the loop-invariant to conclude that A is sorted after the execution of
the algorithm.

Solution. After iteration d (or before iteration d + 1, which is never executed), the
invariant states that the numbers in A are sorted with respect to their last d digits, which
simply means that all numbers are now sorted with regards to all their digits. X

5


