
Exercise Sheet 9

COMS10017 Algorithms 2020/2021

1 Matrix Chain Parenthesization

Consider an instance of Matrix-Chain-Parenthesization with n = 4 and p = 2 9 8 6 2.

1. Complete the dynamic programming table below.
0

0
0

0


Solution. 

0
144 0
240 432 0
264 240 96 0


X

2. What is the optimal parenthesization of the matrix product A1 ×A2 ×A3 ×A4?

Solution.
((A1 ×A2)×A3)×A4

X

2 Dynamic Programming: Breaking a String

A certain string-processing language allows a programmer to break a string into two pieces.
Because this operation copies the string, it costs n time units to break a string of n characters
into two pieces. Suppose a programmer wants to break a string into many pieces. The order
in which the breaks occur can affect the total amount of time used. For example, suppose that
the programmer wants to break a 20-character string after characters 2, 8, and 10 (numbering
the characters in ascending order from the left-hand end, starting from 1). If she programs
the breaks to occur in left-to-right order, then the first break costs 20 time units, the second
break costs 18 time units, and the third break costs 12 time units, totaling 50 time units. If she
programs the breaks to occur in right-to-left order, however, then the first break costs 20 time
units, the second break costs 10 time units, and the third break costs 8 time units, totaling 38
time units. In yet another order, she could break first at 8 (costing 20), then break the left
piece at 2 (costing 8), and finally the right piece at 10 (costing 12), for a total cost of 40.

1



Design an algorithm that, given the number of characters after which to break, determines
a least-cost way to sequence those breaks. More formally, given a string S with n characters
and an array L[1..m] containing the break points, compute the lowest cost for a sequence of
breaks, along with a sequence of breaks that achieves this cost. What is the runtime of your
algorithm?

Solution. Let us assume that our input is a string S of length n (indexed from 0 to n−1) and
an array L of length m (indexed from 0 to m−1) containing the break points. Furthermore, we
assume that the array L of break positions is sorted in increasing order. Further, if we say that
we break string S at position p, then we obtain the two substrings S[0 . . . p], and S[p+1 . . . n−1].

Optimal Substructure: Let us first identify the optimal substructure of the problem.
Consider an optimal sequence of break position j1, j2, j3, . . . , jm, i.e., we first break S at position
L[j1], then at L[j2], and so on. Consider the first break point L[j1]: It breaks the string S into
two substrings S1 and S2. Then, the optimal substructure is as follows: The subsequence of
L[j2], L[j3], . . . L[jm] that are smaller than L[j1] breaks S1 optimally, and the subsequence of
L[j2], L[j3], . . . L[jm] of values larger than L[j1] breaks S2 optimally.

For technical reasons let us first increase the array L by two and add the two break points
−1 (at the beginning of L) and n − 1 (at the end of L) to the array. Then, at the end of the
algorithm we will have obtained the substrings S0,1, S1,2, S2,3, . . . , Sm,m+1, using the definition
(for any i < j)

Si,j := S[L[i] + 1, . . . , L[j]] .

From now on, the array L is hence of length m + 2.
Our dynamic programming table T is indexed by two variables i, j and will store the optimal

cost for breaking Si,j , for every 0 ≤ i < j ≤ m + 1. Then:

T [i, i + 1] = 0 for every 0 ≤ i ≤ m

T [i, j] = min
k∈{i+1,...,j−1}

{ T [i, k]︸ ︷︷ ︸
cost for left substr.

+ T [k, j]︸ ︷︷ ︸
cost for right substr.

+ (L[j]− L[i])︸ ︷︷ ︸
cost for breaking Si,j

} .

The minimum cost for breaking the entire string is then stored in T [0,m + 1]. Since the table
is of size m + 2 ×m + 2, and the minimum in the previous definition is taken over at most m
elements, our resulting dynamic programming algorithm has a runtime of O(m3).

Example: Let’s illustrate this approach with the example given in the problem statement.
We have n = 20, and L = [−1, 1, 7, 9, 19] (we added the values 0 to the beginning and n− 1 at
the end, we also subtracted 1 from each internal breakpoint since we index arrays starting at 1
in the problem statement). After breaking up the string S, we are left with the substrings

S0,1 = S[0 . . . 1]

S1,2 = S[2 . . . 7]

S2,3 = S[8 . . . 9]

S3,4 = S[10 . . . 19].

We first enter the values T [i, i + 1] = 0 into our table. Observe that there is no cost since
the strings Si,i+1 do not need to be broken any further:

2



i = 0 i = 1 i = 2 i = 3

j = 1 0
j = 2 0
j = 3 0
j = 4 0

Next, we can fill the first off-diagonal. Observe that there is no “choice” for breaking Si,i+2,
since the only breakpoint within this string is L[i + 1]. We thus obtain:

i = 0 i = 1 i = 2 i = 3

j = 1 0
j = 2 8 0
j = 3 8 0
j = 4 12 0

Regarding the next off-diagonal, there are two choices to break Si,i+3: Either we break at point
L[i + 1] or L[i + 2] first. We obtain:

T [0, 3] = min
k∈{1,2}

{T [0, k] + T [k, 3] + 10} = min{0 + 8 + 10, 8 + 0 + 10} = 18

T [1, 4] = min
k∈{2,3}

{T [1, k] + T [k, 4] + 18} = min{0 + 12 + 18, 8 + 0 + 18} = 26 .

We obtain the following table:

i = 0 i = 1 i = 2 i = 3

j = 1 0
j = 2 8 0
j = 3 18 8 0
j = 4 26 12 0

Last we compute the minimum cost for breaking the entire string T [0, 4]:

T [0, 4] = min
k∈{1,2,3}

{T [0, k] + T [k, 4] + 20} = min{0 + 26 + 20, 8 + 12 + 20, 18 + 0 + 20} = 38 .

This completes our table: We obtain the following table:

i = 0 i = 1 i = 2 i = 3

j = 1 0
j = 2 8 0
j = 3 18 8 0
j = 4 38 26 12 0

The right-to-left strategy suggested in the problem description is thus optimal.
X

3 Difficult and Optional: Image Compression by Seam Carving

We are given a color picture of an m×n array A[1..m, 1..n] of pixels, where each pixel specifies a
triple of red, green, and blue (RGB) intensities. Suppose that we wish to compress this picture
slightly. Specifically, we wish to remove one pixel from each of the m rows, so that the whole
picture becomes one pixel narrower. To avoid disturbing visual effects, however, we require that
the pixels removed in two adjacent rows be in the same or adjacent columns; the pixels removed
form a “seam” from the top row to the bottom row where successive pixels in the seam are
adjacent vertically or diagonally.

3



1. Show that the number of such possible seams grows at least exponentially in m, assuming
that n ≥ 2.

2. Suppose now that along with each pixel A[i, j], we have calculated a real-valued disruption
measure d[i, j], indicating how disruptive it would be to remove pixel A[i, j]. Intuitively,
the lower a pixel’s disruption measure, the more similar the pixel is to its neighbors.
Suppose further that we define the disruption of a seam to be the sum of the disruption
measures of its pixels.

Give an algorithm to find a seam with the lowest disruption measure. How efficient is
your algorithm?

Solution. See solution to problem 15-8 on page 14 here:

https://sites.math.rutgers.edu/~ajl213/CLRS/Ch15.pdf

X

4

https://sites.math.rutgers.edu/~ajl213/CLRS/Ch15.pdf

	Matrix Chain Parenthesization
	Dynamic Programming: Breaking a String
	Difficult and Optional: Image Compression by Seam Carving

