
The Maximum Subarray Problem
COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

Dr Christian Konrad The Maximum Subarray Problem 1 / 7

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

1 A performs two recursive calls on input sizes at most n/2

2 The combine operation in A takes O(n) time

Then:

A has a runtime of O(n log n) .

Dr Christian Konrad The Maximum Subarray Problem 2 / 7

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

1 A performs two recursive calls on input sizes at most n/2

2 The combine operation in A takes O(n) time

Then:

A has a runtime of O(n log n) .

Dr Christian Konrad The Maximum Subarray Problem 2 / 7

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

1 A performs two recursive calls on input sizes at most n/2

2 The combine operation in A takes O(n) time

Then:

A has a runtime of O(n log n) .

Dr Christian Konrad The Maximum Subarray Problem 2 / 7

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

1 A performs two recursive calls on input sizes at most n/2

2 The combine operation in A takes O(n) time

Then:

A has a runtime of O(n log n) .

Dr Christian Konrad The Maximum Subarray Problem 2 / 7

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

1 A performs two recursive calls on input sizes at most n/2

2 The combine operation in A takes O(n) time

Then:

A has a runtime of O(n log n) .

Dr Christian Konrad The Maximum Subarray Problem 2 / 7

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

1 A performs two recursive calls on input sizes at most n/2

2 The combine operation in A takes O(n) time

Then:

A has a runtime of O(n log n) .

Dr Christian Konrad The Maximum Subarray Problem 2 / 7

Maximum Subarray Problem

Buy Low, Sell High Problem

Input: An array of n integers

Output: Indices 0 ≤ i < j ≤ n − 1 such that A[j]− A[i] is
maximized

 50

 60

 70

 80

 90

 100

 110

 120

 0 2 4 6 8 10 12 14 16

Dr Christian Konrad The Maximum Subarray Problem 3 / 7

Maximum Subarray Problem

Buy Low, Sell High Problem

Input: An array of n integers

Output: Indices 0 ≤ i < j ≤ n − 1 such that A[j]− A[i] is
maximized

 50

 60

 70

 80

 90

 100

 110

 120

 0 2 4 6 8 10 12 14 16
 50

 60

 70

 80

 90

 100

 110

 120

 0 2 4 6 8 10 12 14 16

Dr Christian Konrad The Maximum Subarray Problem 3 / 7

Maximum Subarray Problem

Focus on Array of Changes:

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Maximum Subarray Problem

Input: Array A of n numbers

Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that
∑j

l=i A[l] is
maximum.

Trivial Solution: O(n3) runtime

Compute subarrays for every pair i , j

There are O(n2) pairs, computing the sum takes time O(n) .

Dr Christian Konrad The Maximum Subarray Problem 4 / 7

Maximum Subarray Problem

Focus on Array of Changes:

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Maximum Subarray Problem

Input: Array A of n numbers

Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that
∑j

l=i A[l] is
maximum.

Trivial Solution: O(n3) runtime

Compute subarrays for every pair i , j

There are O(n2) pairs, computing the sum takes time O(n) .

Dr Christian Konrad The Maximum Subarray Problem 4 / 7

Maximum Subarray Problem

Focus on Array of Changes:

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Maximum Subarray Problem

Input: Array A of n numbers

Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that
∑j

l=i A[l] is
maximum.

Trivial Solution: O(n3) runtime

Compute subarrays for every pair i , j

There are O(n2) pairs, computing the sum takes time O(n) .

Dr Christian Konrad The Maximum Subarray Problem 4 / 7

Maximum Subarray Problem

Focus on Array of Changes:

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Maximum Subarray Problem

Input: Array A of n numbers

Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that
∑j

l=i A[l] is
maximum.

Trivial Solution: O(n3) runtime

Compute subarrays for every pair i , j

There are O(n2) pairs, computing the sum takes time O(n) .

Dr Christian Konrad The Maximum Subarray Problem 4 / 7

Maximum Subarray Problem

Focus on Array of Changes:

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Maximum Subarray Problem

Input: Array A of n numbers

Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that
∑j

l=i A[l] is
maximum.

Trivial Solution: O(n3) runtime

Compute subarrays for every pair i , j

There are O(n2) pairs, computing the sum takes time O(n) .

Dr Christian Konrad The Maximum Subarray Problem 4 / 7

Maximum Subarray Problem

Focus on Array of Changes:

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Maximum Subarray Problem

Input: Array A of n numbers

Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that
∑j

l=i A[l] is
maximum.

Trivial Solution: O(n3) runtime

Compute subarrays for every pair i , j

There are O(n2) pairs, computing the sum takes time O(n) .

Dr Christian Konrad The Maximum Subarray Problem 4 / 7

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:
Compute maximum subarrays in left and right halves of initial array

A = L ◦ R

Combine:
Given maximum subarrays in L and R, we need to compute
maximum subarray in A

Three cases:

1 Maximum subarray is entirely included in L X
2 Maximum subarray is entirely included in R X
3 Maximum subarray crosses midpoint, i.e., i is included in L

and j is included in R

Dr Christian Konrad The Maximum Subarray Problem 5 / 7

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

A = L ◦ R

Combine:
Given maximum subarrays in L and R, we need to compute
maximum subarray in A

Three cases:

1 Maximum subarray is entirely included in L X
2 Maximum subarray is entirely included in R X
3 Maximum subarray crosses midpoint, i.e., i is included in L

and j is included in R

Dr Christian Konrad The Maximum Subarray Problem 5 / 7

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:
Compute maximum subarrays in left and right halves of initial array

A = L ◦ R

Combine:
Given maximum subarrays in L and R, we need to compute
maximum subarray in A

Three cases:

1 Maximum subarray is entirely included in L X
2 Maximum subarray is entirely included in R X
3 Maximum subarray crosses midpoint, i.e., i is included in L

and j is included in R

Dr Christian Konrad The Maximum Subarray Problem 5 / 7

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:
Compute maximum subarrays in left and right halves of initial array

A = L ◦ R

Combine:

Given maximum subarrays in L and R, we need to compute
maximum subarray in A

Three cases:

1 Maximum subarray is entirely included in L X
2 Maximum subarray is entirely included in R X
3 Maximum subarray crosses midpoint, i.e., i is included in L

and j is included in R

Dr Christian Konrad The Maximum Subarray Problem 5 / 7

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:
Compute maximum subarrays in left and right halves of initial array

A = L ◦ R

Combine:
Given maximum subarrays in L and R, we need to compute
maximum subarray in A

Three cases:

1 Maximum subarray is entirely included in L X
2 Maximum subarray is entirely included in R X
3 Maximum subarray crosses midpoint, i.e., i is included in L

and j is included in R

Dr Christian Konrad The Maximum Subarray Problem 5 / 7

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:
Compute maximum subarrays in left and right halves of initial array

A = L ◦ R

Combine:
Given maximum subarrays in L and R, we need to compute
maximum subarray in A

Three cases:

1 Maximum subarray is entirely included in L X
2 Maximum subarray is entirely included in R X
3 Maximum subarray crosses midpoint, i.e., i is included in L

and j is included in R

Dr Christian Konrad The Maximum Subarray Problem 5 / 7

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:
Compute maximum subarrays in left and right halves of initial array

A = L ◦ R

Combine:
Given maximum subarrays in L and R, we need to compute
maximum subarray in A

Three cases:

1 Maximum subarray is entirely included in L X

2 Maximum subarray is entirely included in R X
3 Maximum subarray crosses midpoint, i.e., i is included in L

and j is included in R

Dr Christian Konrad The Maximum Subarray Problem 5 / 7

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:
Compute maximum subarrays in left and right halves of initial array

A = L ◦ R

Combine:
Given maximum subarrays in L and R, we need to compute
maximum subarray in A

Three cases:

1 Maximum subarray is entirely included in L X
2 Maximum subarray is entirely included in R X

3 Maximum subarray crosses midpoint, i.e., i is included in L
and j is included in R

Dr Christian Konrad The Maximum Subarray Problem 5 / 7

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:
Compute maximum subarrays in left and right halves of initial array

A = L ◦ R

Combine:
Given maximum subarrays in L and R, we need to compute
maximum subarray in A

Three cases:

1 Maximum subarray is entirely included in L X
2 Maximum subarray is entirely included in R X
3 Maximum subarray crosses midpoint, i.e., i is included in L

and j is included in R

Dr Christian Konrad The Maximum Subarray Problem 5 / 7

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

Find maximum subarray A[i , j] such that i ≤ n
2 and j > n

2
(assume that n is even)

Observe that:
∑j

l=i A[l] =
∑ n

2
l=i A[i] +

∑j
l= n

2
+1 A[l].

Two Independent Subproblems:

Find index i such that
∑ n

2
l=i A[i] is maximized

Find index j such that
∑j

l= n
2
+1 A[l] is maximized

We can solve these subproblems in time O(n). (how?)

Dr Christian Konrad The Maximum Subarray Problem 6 / 7

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

Find maximum subarray A[i , j] such that i ≤ n
2 and j > n

2
(assume that n is even)

Observe that:
∑j

l=i A[l] =
∑ n

2
l=i A[i] +

∑j
l= n

2
+1 A[l].

Two Independent Subproblems:

Find index i such that
∑ n

2
l=i A[i] is maximized

Find index j such that
∑j

l= n
2
+1 A[l] is maximized

We can solve these subproblems in time O(n). (how?)

Dr Christian Konrad The Maximum Subarray Problem 6 / 7

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

Find maximum subarray A[i , j] such that i ≤ n
2 and j > n

2
(assume that n is even)

Observe that:
∑j

l=i A[l] =
∑ n

2
l=i A[i] +

∑j
l= n

2
+1 A[l].

Two Independent Subproblems:

Find index i such that
∑ n

2
l=i A[i] is maximized

Find index j such that
∑j

l= n
2
+1 A[l] is maximized

We can solve these subproblems in time O(n). (how?)

Dr Christian Konrad The Maximum Subarray Problem 6 / 7

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

Find maximum subarray A[i , j] such that i ≤ n
2 and j > n

2
(assume that n is even)

Observe that:
∑j

l=i A[l] =
∑ n

2
l=i A[i] +

∑j
l= n

2
+1 A[l].

Two Independent Subproblems:

Find index i such that
∑ n

2
l=i A[i] is maximized

Find index j such that
∑j

l= n
2
+1 A[l] is maximized

We can solve these subproblems in time O(n). (how?)

Dr Christian Konrad The Maximum Subarray Problem 6 / 7

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

Find maximum subarray A[i , j] such that i ≤ n
2 and j > n

2
(assume that n is even)

Observe that:
∑j

l=i A[l] =
∑ n

2
l=i A[i] +

∑j
l= n

2
+1 A[l].

Two Independent Subproblems:

Find index i such that
∑ n

2
l=i A[i] is maximized

Find index j such that
∑j

l= n
2
+1 A[l] is maximized

We can solve these subproblems in time O(n). (how?)

Dr Christian Konrad The Maximum Subarray Problem 6 / 7

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

Find maximum subarray A[i , j] such that i ≤ n
2 and j > n

2
(assume that n is even)

Observe that:
∑j

l=i A[l] =
∑ n

2
l=i A[i] +

∑j
l= n

2
+1 A[l].

Two Independent Subproblems:

Find index i such that
∑ n

2
l=i A[i] is maximized

Find index j such that
∑j

l= n
2
+1 A[l] is maximized

We can solve these subproblems in time O(n). (how?)

Dr Christian Konrad The Maximum Subarray Problem 6 / 7

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

Find maximum subarray A[i , j] such that i ≤ n
2 and j > n

2
(assume that n is even)

Observe that:
∑j

l=i A[l] =
∑ n

2
l=i A[i] +

∑j
l= n

2
+1 A[l].

Two Independent Subproblems:

Find index i such that
∑ n

2
l=i A[i] is maximized

Find index j such that
∑j

l= n
2
+1 A[l] is maximized

We can solve these subproblems in time O(n). (how?)

Dr Christian Konrad The Maximum Subarray Problem 6 / 7

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

Find maximum subarray A[i , j] such that i ≤ n
2 and j > n

2
(assume that n is even)

Observe that:
∑j

l=i A[l] =
∑ n

2
l=i A[i] +

∑j
l= n

2
+1 A[l].

Two Independent Subproblems:

Find index i such that
∑ n

2
l=i A[i] is maximized

Find index j such that
∑j

l= n
2
+1 A[l] is maximized

We can solve these subproblems in time O(n). (how?)

Dr Christian Konrad The Maximum Subarray Problem 6 / 7

Maximum Subarray Problem - Summary

Require: Array A of n numbers
if n = 1 then

return A
Recursively compute max. subarray S1 in A[0, bn2c]
Recursively compute max. subarray S2 in A[bn2c+ 1, n − 1]
Compute maximum subarray S3 that crosses midpoint
return Heaviest of the three subarrays S1,S2, S3

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

Two recursive calls with inputs that are only half the size

Conquer step requires O(n) time

Identical to Merge Sort, runtime O(n log n)!

Dr Christian Konrad The Maximum Subarray Problem 7 / 7

Maximum Subarray Problem - Summary

Require: Array A of n numbers
if n = 1 then

return A
Recursively compute max. subarray S1 in A[0, bn2c]
Recursively compute max. subarray S2 in A[bn2c+ 1, n − 1]
Compute maximum subarray S3 that crosses midpoint
return Heaviest of the three subarrays S1,S2, S3

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

Two recursive calls with inputs that are only half the size

Conquer step requires O(n) time

Identical to Merge Sort, runtime O(n log n)!

Dr Christian Konrad The Maximum Subarray Problem 7 / 7

Maximum Subarray Problem - Summary

Require: Array A of n numbers
if n = 1 then

return A
Recursively compute max. subarray S1 in A[0, bn2c]
Recursively compute max. subarray S2 in A[bn2c+ 1, n − 1]
Compute maximum subarray S3 that crosses midpoint
return Heaviest of the three subarrays S1,S2, S3

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

Two recursive calls with inputs that are only half the size

Conquer step requires O(n) time

Identical to Merge Sort, runtime O(n log n)!

Dr Christian Konrad The Maximum Subarray Problem 7 / 7

Maximum Subarray Problem - Summary

Require: Array A of n numbers
if n = 1 then

return A
Recursively compute max. subarray S1 in A[0, bn2c]
Recursively compute max. subarray S2 in A[bn2c+ 1, n − 1]
Compute maximum subarray S3 that crosses midpoint
return Heaviest of the three subarrays S1,S2, S3

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

Two recursive calls with inputs that are only half the size

Conquer step requires O(n) time

Identical to Merge Sort, runtime O(n log n)!

Dr Christian Konrad The Maximum Subarray Problem 7 / 7

Maximum Subarray Problem - Summary

Require: Array A of n numbers
if n = 1 then

return A
Recursively compute max. subarray S1 in A[0, bn2c]
Recursively compute max. subarray S2 in A[bn2c+ 1, n − 1]
Compute maximum subarray S3 that crosses midpoint
return Heaviest of the three subarrays S1,S2, S3

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

Two recursive calls with inputs that are only half the size

Conquer step requires O(n) time

Identical to Merge Sort, runtime O(n log n)!

Dr Christian Konrad The Maximum Subarray Problem 7 / 7

