The Maximum Subarray Problem COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

Let A be a divide and conquer algorithm with the following properties:

Let A be a divide and conquer algorithm with the following properties:

() A performs two recursive calls on input sizes at most n/2

Let A be a divide and conquer algorithm with the following properties:

- **(**) A performs two recursive calls on input sizes at most n/2
- 2 The combine operation in A takes O(n) time

Let A be a divide and conquer algorithm with the following properties:

- **(**) A performs two recursive calls on input sizes at most n/2
- 2 The combine operation in A takes O(n) time

Then:

Let A be a divide and conquer algorithm with the following properties:

- **(**) A performs two recursive calls on input sizes at most n/2
- 2 The combine operation in A takes O(n) time

Then:

A has a runtime of $O(n \log n)$.

Buy Low, Sell High Problem

- Input: An array of *n* integers
- Output: Indices 0 ≤ i < j ≤ n − 1 such that A[j] − A[i] is maximized

Buy Low, Sell High Problem

- Input: An array of *n* integers
- Output: Indices 0 ≤ i < j ≤ n − 1 such that A[j] − A[i] is maximized

-

FOCU	Focus on Array of Changes:													
Day	0	1	2	3	4	5	6	7	8	9	10	11		
\$	100	113	110	85	105	102	86	63	81	101	94	106		
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12		

cus on Array of Changes:

Day	0	1	2	3	4	5	6	7	8	9	10	11
\$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Day	0	1	2	3	4	5	6	7	8	9	10	11
\$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

- Input: Array A of n numbers
- Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that ∑^j_{l=i} A[l] is maximum.

Day	0	1	2	3	4	5	6	7	8	9	10	11
\$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

- Input: Array A of n numbers
- Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that ∑^j_{l=i} A[l] is maximum.

Trivial Solution: $O(n^3)$ runtime

Day	0	1	2	3	4	5	6	7	8	9	10	11
\$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

- Input: Array A of n numbers
- Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that ∑^j_{l=i} A[l] is maximum.

Trivial Solution: $O(n^3)$ runtime

• Compute subarrays for every pair *i*, *j*

Day	0	1	2	3	4	5	6	7	8	9	10	11
\$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

- Input: Array A of n numbers
- Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that ∑^j_{l=i} A[l] is maximum.

Trivial Solution: $O(n^3)$ runtime

- Compute subarrays for every pair *i*, *j*
- There are $O(n^2)$ pairs, computing the sum takes time O(n) .

Divide and Conquer:

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

 $A = L \circ R$

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

 $A = L \circ R$

Combine:

Compute maximum subarrays in left and right halves of initial array

 $A = L \circ R$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Compute maximum subarrays in left and right halves of initial array

 $A = L \circ R$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Three cases:

Compute maximum subarrays in left and right halves of initial array

 $A = L \circ R$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Three cases:

() Maximum subarray is entirely included in $L \checkmark$

Compute maximum subarrays in left and right halves of initial array

 $A = L \circ R$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Three cases:

- **(**) Maximum subarray is entirely included in $L \checkmark$
- 2 Maximum subarray is entirely included in $R \checkmark$

Compute maximum subarrays in left and right halves of initial array

 $A = L \circ R$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Three cases:

- **(**) Maximum subarray is entirely included in $L \checkmark$
- 2 Maximum subarray is entirely included in $R \checkmark$
- Maximum subarray crosses midpoint, i.e., i is included in L and j is included in R

Maximum Subarray Crosses Midpoint:

• Find maximum subarray A[i, j] such that $i \le \frac{n}{2}$ and $j > \frac{n}{2}$ (assume that n is even)

- Find maximum subarray A[i, j] such that $i \le \frac{n}{2}$ and $j > \frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l] = \sum_{l=i}^{\frac{n}{2}} A[i] + \sum_{l=\frac{n}{2}+1}^{j} A[l].$

- Find maximum subarray A[i, j] such that $i \le \frac{n}{2}$ and $j > \frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l] = \sum_{l=i}^{\frac{n}{2}} A[i] + \sum_{l=\frac{n}{2}+1}^{j} A[l].$

Two Independent Subproblems:

- Find maximum subarray A[i, j] such that $i \le \frac{n}{2}$ and $j > \frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l] = \sum_{l=i}^{\frac{n}{2}} A[i] + \sum_{l=\frac{n}{2}+1}^{j} A[l].$

Two Independent Subproblems:

• Find index *i* such that $\sum_{i=i}^{\frac{n}{2}} A[i]$ is maximized

- Find maximum subarray A[i, j] such that $i \le \frac{n}{2}$ and $j > \frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l] = \sum_{l=i}^{\frac{n}{2}} A[i] + \sum_{l=\frac{n}{2}+1}^{j} A[l].$

Two Independent Subproblems:

- Find index *i* such that $\sum_{i=i}^{\frac{n}{2}} A[i]$ is maximized
- Find index j such that $\sum_{l=\frac{n}{2}+1}^{j} A[l]$ is maximized

- Find maximum subarray A[i,j] such that $i \le \frac{n}{2}$ and $j > \frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l] = \sum_{l=i}^{\frac{n}{2}} A[i] + \sum_{l=\frac{n}{2}+1}^{j} A[l].$

Two Independent Subproblems:

- Find index *i* such that $\sum_{i=i}^{\frac{n}{2}} A[i]$ is maximized
- Find index j such that $\sum_{l=\frac{n}{2}+1}^{j} A[l]$ is maximized

We can solve these subproblems in time O(n). (how?)

Recursive Algorithm for the Maximum Subarray Problem

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

• Two recursive calls with inputs that are only half the size

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

- Two recursive calls with inputs that are only half the size
- Conquer step requires O(n) time

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

- Two recursive calls with inputs that are only half the size
- Conquer step requires O(n) time
- Identical to Merge Sort, runtime $O(n \log n)!$