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Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

1 A performs two recursive calls on input sizes at most n/2

2 The combine operation in A takes O(n) time

Then:

A has a runtime of O(n log n) .
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Maximum Subarray Problem

Buy Low, Sell High Problem

Input: An array of n integers

Output: Indices 0 ≤ i < j ≤ n − 1 such that A[j ]− A[i ] is
maximized
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Maximum Subarray Problem

Focus on Array of Changes:

Day 0 1 2 3 4 5 6 7 8 9 10 11

$ 100 113 110 85 105 102 86 63 81 101 94 106
∆ 13 -3 -25 20 -3 -16 -23 18 20 -7 12

Maximum Subarray Problem

Input: Array A of n numbers

Output: Indices 0 ≤ i ≤ j ≤ n − 1 such that
∑j

l=i A[l ] is
maximum.

Trivial Solution: O(n3) runtime

Compute subarrays for every pair i , j

There are O(n2) pairs, computing the sum takes time O(n) .
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Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:
Compute maximum subarrays in left and right halves of initial array

A = L ◦ R

Combine:
Given maximum subarrays in L and R, we need to compute
maximum subarray in A

Three cases:

1 Maximum subarray is entirely included in L X
2 Maximum subarray is entirely included in R X
3 Maximum subarray crosses midpoint, i.e., i is included in L

and j is included in R
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Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

Find maximum subarray A[i , j ] such that i ≤ n
2 and j > n

2
(assume that n is even)

Observe that:
∑j

l=i A[l ] =
∑ n

2
l=i A[i ] +

∑j
l= n

2
+1 A[l ].

Two Independent Subproblems:

Find index i such that
∑ n

2
l=i A[i ] is maximized

Find index j such that
∑j

l= n
2
+1 A[l ] is maximized

We can solve these subproblems in time O(n). (how?)
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Maximum Subarray Problem - Summary

Require: Array A of n numbers
if n = 1 then

return A
Recursively compute max. subarray S1 in A[0, bn2c]
Recursively compute max. subarray S2 in A[bn2c+ 1, n − 1]
Compute maximum subarray S3 that crosses midpoint
return Heaviest of the three subarrays S1,S2, S3

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

Two recursive calls with inputs that are only half the size

Conquer step requires O(n) time

Identical to Merge Sort, runtime O(n log n)!
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