Trees

COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

Trees

Definition: A tree $T=(V, E)$ of size n is a tuple consisting of

$$
V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \text { and } E=\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}
$$

with $|V|=n$ and $|E|=n-1$ with $e_{i}=\left\{v_{j}, v_{k}\right\}$ for some $j \neq k$ s.t. for every pair of vertices $v_{i}, v_{j}(i \neq j)$, there is a path from v_{i} to $v_{j} . V$ are the nodes/vertices and E are the edges of T.

Trees

Definition: A tree $T=(V, E)$ of size n is a tuple consisting of

$$
V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \text { and } E=\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}
$$

with $|V|=n$ and $|E|=n-1$ with $e_{i}=\left\{v_{j}, v_{k}\right\}$ for some $j \neq k$ s.t. for every pair of vertices $v_{i}, v_{j}(i \neq j)$, there is a path from v_{i} to $v_{j} . V$ are the nodes/vertices and E are the edges of T.

Trees

Definition: A tree $T=(V, E)$ of size n is a tuple consisting of

$$
V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \text { and } E=\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}
$$

with $|V|=n$ and $|E|=n-1$ with $e_{i}=\left\{v_{j}, v_{k}\right\}$ for some $j \neq k$ s.t. for every pair of vertices $v_{i}, v_{j}(i \neq j)$, there is a path from v_{i} to $v_{j} . V$ are the nodes/vertices and E are the edges of T.

\checkmark

Trees

Definition: A tree $T=(V, E)$ of size n is a tuple consisting of

$$
V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \text { and } E=\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}
$$

with $|V|=n$ and $|E|=n-1$ with $e_{i}=\left\{v_{j}, v_{k}\right\}$ for some $j \neq k$ s.t. for every pair of vertices $v_{i}, v_{j}(i \neq j)$, there is a path from v_{i} to $v_{j} . V$ are the nodes/vertices and E are the edges of T.

x

Rooted Trees

Definition: (rooted tree) A rooted tree is a triple $T=(v, V, E)$ such that $T=(V, E)$ is a tree and $v \in V$ is a designated node that we call the root of T.

Rooted Trees

Definition: (rooted tree) A rooted tree is a triple $T=(v, V, E)$ such that $T=(V, E)$ is a tree and $v \in V$ is a designated node that we call the root of T.

Definition: (leaf, internal node) A leaf in a tree is a node with exactly one incident edge. A node that is not a leaf is called an internal node.

Children, Parent, and Degree

Further Definitions:

Children, Parent, and Degree

Further Definitions:

- The parent of a node v is the closest node on a path from v to the root. The root does not have a parent.

Children, Parent, and Degree

Further Definitions:

- The parent of a node v is the closest node on a path from v to the root. The root does not have a parent.
- The children of a node v are v 's neighbours except its parent.

children(v)

Children, Parent, and Degree

Further Definitions:

- The parent of a node v is the closest node on a path from v to the root. The root does not have a parent.
- The children of a node v are v 's neighbours except its parent.

children(v)
- The height of a tree is the length of a longest root-to-leaf path.

Children, Parent, and Degree

Further Definitions:

- The parent of a node v is the closest node on a path from v to the root. The root does not have a parent.
- The children of a node v are v 's neighbours except its parent.

children(v)
- The height of a tree is the length of a longest root-to-leaf path.
- The degree $\operatorname{deg}(v)$ of a node v is the number of incident edges to v. Since every edge is incident to two vertices we have

$$
\sum_{v \in V} \operatorname{deg}(v)=2 \cdot|E|=2(n-1)
$$

Children, Parent, and Degree

Further Definitions:

- The parent of a node v is the closest node on a path from v to the root. The root does not have a parent.
- The children of a node v are v 's neighbours except its parent.

children(v)
- The height of a tree is the length of a longest root-to-leaf path.
- The degree $\operatorname{deg}(v)$ of a node v is the number of incident edges to v. Since every edge is incident to two vertices we have

$$
\sum_{v \in V} \operatorname{deg}(v)=2 \cdot|E|=2(n-1)
$$

- The level of a vertex v is the length of the unique path from the root to v plus 1 .

Properties of Trees

Property:

Properties of Trees

Property: Every tree has at least 2 leaves

Properties of Trees

Property: Every tree has at least 2 leaves
Proof

Properties of Trees

Property: Every tree has at least 2 leaves
Proof Let $L \subseteq V$ be the subset of leaves.

Properties of Trees

Property: Every tree has at least 2 leaves
Proof Let $L \subseteq V$ be the subset of leaves. Suppose that there is at most 1 leaf, i.e., $|L| \leq 1$.

Properties of Trees

Property: Every tree has at least 2 leaves
Proof Let $L \subseteq V$ be the subset of leaves. Suppose that there is at most 1 leaf, i.e., $|L| \leq 1$. Then:

Properties of Trees

Property: Every tree has at least 2 leaves
Proof Let $L \subseteq V$ be the subset of leaves. Suppose that there is at most 1 leaf, i.e., $|L| \leq 1$. Then:

$$
\sum_{v \in V} \operatorname{deg}(v)
$$

Properties of Trees

Property: Every tree has at least 2 leaves
Proof Let $L \subseteq V$ be the subset of leaves. Suppose that there is at most 1 leaf, i.e., $|L| \leq 1$. Then:

$$
\sum_{v \in V} \operatorname{deg}(v)=\sum_{v \in L} \operatorname{deg}(v)+\sum_{v \in V \backslash L} \operatorname{deg}(v)
$$

Properties of Trees

Property: Every tree has at least 2 leaves
Proof Let $L \subseteq V$ be the subset of leaves. Suppose that there is at most 1 leaf, i.e., $|L| \leq 1$. Then:

$$
\begin{aligned}
\sum_{v \in V} \operatorname{deg}(v) & =\sum_{v \in L} \operatorname{deg}(v)+\sum_{v \in V \backslash L} \operatorname{deg}(v) \\
& \geq|L| \cdot 1+(|V|-|L|) \cdot 2
\end{aligned}
$$

Properties of Trees

Property: Every tree has at least 2 leaves
Proof Let $L \subseteq V$ be the subset of leaves. Suppose that there is at most 1 leaf, i.e., $|L| \leq 1$. Then:

$$
\begin{aligned}
\sum_{v \in V} \operatorname{deg}(v) & =\sum_{v \in L} \operatorname{deg}(v)+\sum_{v \in V \backslash L} \operatorname{deg}(v) \\
& \geq|L| \cdot 1+(|V|-|L|) \cdot 2=2|V|-|L| \geq
\end{aligned}
$$

Properties of Trees

Property: Every tree has at least 2 leaves
Proof Let $L \subseteq V$ be the subset of leaves. Suppose that there is at most 1 leaf, i.e., $|L| \leq 1$. Then:

$$
\begin{aligned}
\sum_{v \in V} \operatorname{deg}(v) & =\sum_{v \in L} \operatorname{deg}(v)+\sum_{v \in V \backslash L} \operatorname{deg}(v) \\
& \geq|L| \cdot 1+(|V|-|L|) \cdot 2=2|V|-|L| \geq 2 n-1
\end{aligned}
$$

Properties of Trees

Property: Every tree has at least 2 leaves

Proof Let $L \subseteq V$ be the subset of leaves. Suppose that there is at most 1 leaf, i.e., $|L| \leq 1$. Then:

$$
\begin{aligned}
\sum_{v \in V} \operatorname{deg}(v) & =\sum_{v \in L} \operatorname{deg}(v)+\sum_{v \in V \backslash L} \operatorname{deg}(v) \\
& \geq|L| \cdot 1+(|V|-|L|) \cdot 2=2|V|-|L| \geq 2 n-1
\end{aligned}
$$

a contradiction to the fact that $\sum_{v \in V} \operatorname{deg}(v)=2(n-1)$ in every tree.

Binary Trees

Definition: (k-ary tree) A (rooted) tree is k-ary if every node has at most k children. If $k=2$ then the tree is called binary. A k ary tree is

- full if every internal node has exactly k children,
- complete if all levels except possibly the last is entirely filled (and last level is filled from left to right),
- perfect if all levels are entirely filled.

Binary Trees

Definition: (k-ary tree) A (rooted) tree is k-ary if every node has at most k children. If $k=2$ then the tree is called binary. A k ary tree is

- full if every internal node has exactly k children,
- complete if all levels except possibly the last is entirely filled (and last level is filled from left to right),
- perfect if all levels are entirely filled.

complete 3-ary tree full 3-ary tree perfect binary tree

Height of Perfect and Complete k-ary Trees

Height of k-ary Trees

Height of Perfect and Complete k-ary Trees

Height of k-ary Trees

- The number of nodes in a perfect k-ary tree of height $i-1$ is

$$
\sum_{j=0}^{i-1} k^{j}=\frac{k^{i}-1}{k-1}
$$

Height of Perfect and Complete k-ary Trees

Height of k-ary Trees

- The number of nodes in a perfect k-ary tree of height $i-1$ is

$$
\sum_{j=0}^{i-1} k^{j}=\frac{k^{i}-1}{k-1}
$$

- In other words, a perfect k-ary tree on n nodes has height:

$$
\begin{aligned}
n & =\frac{k^{i}-1}{k-1} \\
k^{i} & =n(k-1)+1 \\
i & =\log _{k}(n(k-1)+1)=O\left(\log _{k} n\right)
\end{aligned}
$$

Height of Perfect and Complete k-ary Trees

Height of k-ary Trees

- The number of nodes in a perfect k-ary tree of height $i-1$ is

$$
\sum_{j=0}^{i-1} k^{j}=\frac{k^{i}-1}{k-1}
$$

- In other words, a perfect k-ary tree on n nodes has height:

$$
\begin{aligned}
n & =\frac{k^{i}-1}{k-1} \\
k^{i} & =n(k-1)+1 \\
i & =\log _{k}(n(k-1)+1)=O\left(\log _{k} n\right)
\end{aligned}
$$

- Similarly, a complete k-ary tree has height $O\left(\log _{k} n\right)$.

Height of Perfect and Complete k-ary Trees

Height of k-ary Trees

- The number of nodes in a perfect k-ary tree of height $i-1$ is

$$
\sum_{j=0}^{i-1} k^{j}=\frac{k^{i}-1}{k-1}
$$

- In other words, a perfect k-ary tree on n nodes has height:

$$
\begin{aligned}
n & =\frac{k^{i}-1}{k-1} \\
k^{i} & =n(k-1)+1 \\
i & =\log _{k}(n(k-1)+1)=O\left(\log _{k} n\right)
\end{aligned}
$$

- Similarly, a complete k-ary tree has height $O\left(\log _{k} n\right)$.

Remark: The runtime of many algorithms that use tree data structures depends on the height of these trees. We are therefore interested in using complete/perfect trees.

