Lower Bound for Sorting
 COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

Can we sort faster than $O(n \log n)$ time?

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster than $O(n \log n)$ time?

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

Can we sort faster than $O(n \log n)$ time?

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

Yes! sometimes

Can we sort faster than $O(n \log n)$ time?

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

Yes! sometimes, but not all algorithms can

Can we sort faster than $O(n \log n)$ time?

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

Yes! sometimes, but not all algorithms can, and we generally don't know how to ...

Can we sort faster than $O(n \log n)$ time?

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

Yes! sometimes, but not all algorithms can, and we generally don't know how to ...

Example: Sort an array $A \in\{0,1\}^{n}$ in time $O(n)$?

Can we sort faster than $O(n \log n)$ time?

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

Yes! sometimes, but not all algorithms can, and we generally don't know how to ...

Example: Sort an array $A \in\{0,1\}^{n}$ in time $O(n)$?

- Count number of $0 \mathrm{~s} n_{0}$
- Write n_{0} Os followed by $n-n_{0} 1 \mathrm{~s}$
- Both operations take time $O(n)$

Comparison-based Sorting

Comparison-based Sorting

Comparison-based Sorting

Comparison-based Sorting

- Order is determined solely by comparing input elements

Comparison-based Sorting

Comparison-based Sorting

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is $A[i] \leq A[j]$?", for some i, j, in particular, we may not inspect the elements

Comparison-based Sorting

Comparison-based Sorting

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is $A[i] \leq A[j]$?", for some i, j, in particular, we may not inspect the elements
- Quicksort, Mergesort, Insertionsort, Heapsort are comparison-based sorting algorithms

Comparison-based Sorting

Comparison-based Sorting

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is $A[i] \leq A[j]$?", for some i, j, in particular, we may not inspect the elements
- Quicksort, Mergesort, Insertionsort, Heapsort are comparison-based sorting algorithms

Lower Bound for Comparison-based Sorting

Comparison-based Sorting

Comparison-based Sorting

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is $A[i] \leq A[j]$?", for some i, j, in particular, we may not inspect the elements
- Quicksort, Mergesort, Insertionsort, Heapsort are comparison-based sorting algorithms

Lower Bound for Comparison-based Sorting

- We will prove that every comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons

Comparison-based Sorting

Comparison-based Sorting

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is $A[i] \leq A[j]$?", for some i, j, in particular, we may not inspect the elements
- Quicksort, Mergesort, Insertionsort, Heapsort are comparison-based sorting algorithms

Lower Bound for Comparison-based Sorting

- We will prove that every comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons
- This implies that $O(n \log n)$ is an optimal runtime for comparison-based sorting

Lower Bound for Comparison-based Sorting

Problem

Lower Bound for Comparison-based Sorting

Problem

- A : array of length n, all elements are different

Lower Bound for Comparison-based Sorting

Problem

- A : array of length n, all elements are different
- We are only allowed to ask: Is $A[i]<A[j]$, for any $i, j \in[n]$

Lower Bound for Comparison-based Sorting

Problem

- A : array of length n, all elements are different
- We are only allowed to ask: Is $A[i]<A[j]$, for any $i, j \in[n]$
- How many questions are needed until we can determine the order of all elements?

Lower Bound for Comparison-based Sorting

Problem

- A : array of length n, all elements are different
- We are only allowed to ask: Is $A[i]<A[j]$, for any $i, j \in[n]$
- How many questions are needed until we can determine the order of all elements?

Permutations

Lower Bound for Comparison-based Sorting

Problem

- A : array of length n, all elements are different
- We are only allowed to ask: Is $A[i]<A[j]$, for any $i, j \in[n]$
- How many questions are needed until we can determine the order of all elements?

Permutations

- A bijective function $\pi:[n] \rightarrow[n]$ is called a permutation

Lower Bound for Comparison-based Sorting

Problem

- A : array of length n, all elements are different
- We are only allowed to ask: Is $A[i]<A[j]$, for any $i, j \in[n]$
- How many questions are needed until we can determine the order of all elements?

Permutations

- A bijective function $\pi:[n] \rightarrow[n]$ is called a permutation

$$
\begin{aligned}
& \pi(1)=3 \\
& \pi(2)=2 \\
& \pi(3)=4 \\
& \pi(4)=1
\end{aligned}
$$

Lower Bound for Comparison-based Sorting

Problem

- A : array of length n, all elements are different
- We are only allowed to ask: Is $A[i]<A[j]$, for any $i, j \in[n]$
- How many questions are needed until we can determine the order of all elements?

Permutations

- A bijective function $\pi:[n] \rightarrow[n]$ is called a permutation

$$
\begin{aligned}
& \pi(1)=3 \\
& \pi(2)=2 \\
& \pi(3)=4 \\
& \pi(4)=1
\end{aligned}
$$

- A reordering of [n]

Lower Bound for Comparison-based Sorting (2)

How many permutations are there?

Lower Bound for Comparison-based Sorting (2)

How many permutations are there?
Let Π be the set of all permutations on n elements

Lower Bound for Comparison-based Sorting (2)

How many permutations are there?
Let Π be the set of all permutations on n elements

Lemma
$|\Pi|=n!=n \cdot(n-1) \ldots 3 \cdot 2 \cdot 1$

Lower Bound for Comparison-based Sorting (2)

How many permutations are there?
Let Π be the set of all permutations on n elements

Lemma
$|\Pi|=n!=n \cdot(n-1) \ldots 3 \cdot 2 \cdot 1$

Proof.

Lower Bound for Comparison-based Sorting (2)

How many permutations are there?
Let Π be the set of all permutations on n elements

Lemma
$|\Pi|=n!=n \cdot(n-1) \ldots 3 \cdot 2 \cdot 1$
Proof. The first element can be mapped to n potential elements.

Lower Bound for Comparison-based Sorting (2)

How many permutations are there?
Let Π be the set of all permutations on n elements

Lemma
$|\Pi|=n!=n \cdot(n-1) \ldots 3 \cdot 2 \cdot 1$
Proof. The first element can be mapped to n potential elements. The second can only be mapped to $(n-1)$ elements.

Lower Bound for Comparison-based Sorting (2)

How many permutations are there?
Let Π be the set of all permutations on n elements

Lemma
$|\Pi|=n!=n \cdot(n-1) \ldots 3 \cdot 2 \cdot 1$
Proof. The first element can be mapped to n potential elements. The second can only be mapped to $(n-1)$ elements. etc.

Lower Bound for Comparison-based Sorting (2)

How many permutations are there?
Let Π be the set of all permutations on n elements

Lemma
$|\Pi|=n!=n \cdot(n-1) \ldots 3 \cdot 2 \cdot 1$
Proof. The first element can be mapped to n potential elements.
The second can only be mapped to $(n-1)$ elements. etc.
Rephrasing our Task:

Lower Bound for Comparison-based Sorting (2)

How many permutations are there?
Let Π be the set of all permutations on n elements

Lemma
$|\Pi|=n!=n \cdot(n-1) \ldots 3 \cdot 2 \cdot 1$
Proof. The first element can be mapped to n potential elements. The second can only be mapped to $(n-1)$ elements. etc.

Rephrasing our Task: Find permutation $\pi \in \Pi$ such that:

$$
A\left[\pi^{-1}(1)\right]<A\left[\pi^{-1}(2)\right]<\cdots<A\left[\pi^{-1}(n-1)\right]<A\left[\pi^{-1}(n)\right]
$$

Decision-tree Model

Example:

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in\{0,1,2\}$

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in\{0,1,2\}$
How many Queries are needed? (worst case)

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in\{0,1,2\}$
How many Queries are needed? (worst case)
Lemma
At least 3 queries are needed to sort 3 elements.

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in\{0,1,2\}$
How many Queries are needed? (worst case)
Lemma
At least 3 queries are needed to sort 3 elements.
Proof.

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in\{0,1,2\}$
How many Queries are needed? (worst case)
Lemma
At least 3 queries are needed to sort 3 elements.
Proof. Let the three elements be a, b, c.

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in\{0,1,2\}$
How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.
Proof. Let the three elements be a, b, c. Suppose that the first query is $a<b$ and suppose that the answer is yes.

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in\{0,1,2\}$
How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.
Proof. Let the three elements be a, b, c. Suppose that the first query is $a<b$ and suppose that the answer is yes. (if it is not then relabel the elements a, b, c).

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in\{0,1,2\}$
How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.
Proof. Let the three elements be a, b, c. Suppose that the first query is $a<b$ and suppose that the answer is yes. (if it is not then relabel the elements $a, b, c)$. We are left with 3 scenarios:

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in\{0,1,2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.
Proof. Let the three elements be a, b, c. Suppose that the first query is $a<b$ and suppose that the answer is yes. (if it is not then relabel the elements $a, b, c)$. We are left with 3 scenarios:

$$
\text { 1. } a<b<c \quad 2 . a<c<b \quad 3 . c<a<b
$$

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in\{0,1,2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.
Proof. Let the three elements be a, b, c. Suppose that the first query is $a<b$ and suppose that the answer is yes. (if it is not then relabel the elements $a, b, c)$. We are left with 3 scenarios:

$$
\text { 1. } a<b<c \quad 2 . a<c<b \quad 3 . c<a<b
$$

Next we either ask $a<c$ or $b<c$.

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in\{0,1,2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.
Proof. Let the three elements be a, b, c. Suppose that the first query is $a<b$ and suppose that the answer is yes. (if it is not then relabel the elements $a, b, c)$. We are left with 3 scenarios:

$$
\text { 1. } a<b<c \quad 2 . a<c<b \quad 3 . c<a<b
$$

Next we either ask $a<c$ or $b<c$. Suppose that we ask $a<c$.

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in\{0,1,2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.
Proof. Let the three elements be a, b, c. Suppose that the first query is $a<b$ and suppose that the answer is yes. (if it is not then relabel the elements $a, b, c)$. We are left with 3 scenarios:

$$
\text { 1. } a<b<c \quad 2 . a<c<b \quad 3 . c<a<b
$$

Next we either ask $a<c$ or $b<c$. Suppose that we ask $a<c$. Then, if the answer is yes then we are left with cases 1 and 2 and we need an additional query.

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in\{0,1,2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.
Proof. Let the three elements be a, b, c. Suppose that the first query is $a<b$ and suppose that the answer is yes. (if it is not then relabel the elements $a, b, c)$. We are left with 3 scenarios:

$$
\text { 1. } a<b<c \quad 2 . a<c<b \quad 3 . c<a<b
$$

Next we either ask $a<c$ or $b<c$. Suppose that we ask $a<c$. Then, if the answer is yes then we are left with cases 1 and 2 and we need an additional query. Suppose that we ask $b<c$.

Decision-tree Model

Example:

Sort 3 elements by asking queries: $A[i]<A[j]$, for $i, j \in\{0,1,2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.
Proof. Let the three elements be a, b, c. Suppose that the first query is $a<b$ and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

$$
\text { 1. } a<b<c \quad 2 . a<c<b \quad 3 . c<a<b
$$

Next we either ask $a<c$ or $b<c$. Suppose that we ask $a<c$. Then, if the answer is yes then we are left with cases 1 and 2 and we need an additional query. Suppose that we ask $b<c$. Then, if the answer is no then we are left with cases 2 and 3 and we need an additional query.

Decision-tree Model (2)

Every Guessing Strategy (and Sorting Algorithm) is a Decision-tree

Decision-tree Model (2)

Every Guessing Strategy (and Sorting Algorithm) is a Decision-tree

Observe:

- Every leaf is a permutation

Decision-tree Model (2)

Every Guessing Strategy (and Sorting Algorithm) is a Decision-tree

Observe:

- Every leaf is a permutation
- An execution is a root-to-leaf path

Sorting Lower Bound

Sorting Lower Bound

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Sorting Lower Bound

Lemma
Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof

Sorting Lower Bound

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree.

Sorting Lower Bound

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf.

Sorting Lower Bound

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf. There are n ! leaves.

Sorting Lower Bound

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf. There are n ! leaves. A binary tree of height h has no more than 2^{h} leaves.

Sorting Lower Bound

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf. There are n ! leaves. A binary tree of height h has no more than 2^{h} leaves. Hence:

$$
2^{h} \geq n!
$$

Sorting Lower Bound

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf. There are n ! leaves. A binary tree of height h has no more than 2^{h} leaves. Hence:

$$
\begin{aligned}
2^{h} & \geq n! \\
h & \geq \log (n!)
\end{aligned}
$$

Sorting Lower Bound

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf. There are n ! leaves. A binary tree of height h has no more than 2^{h} leaves. Hence:

$$
\begin{aligned}
2^{h} & \geq n! \\
h & \geq \log (n!) \geq \log \left(\left(\frac{n}{e}\right)^{n}\right)
\end{aligned}
$$

Sorting Lower Bound

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf. There are n ! leaves. A binary tree of height h has no more than 2^{h} leaves. Hence:

$$
\begin{aligned}
2^{h} & \geq n! \\
h & \geq \log (n!) \geq \log \left(\left(\frac{n}{e}\right)^{n}\right)=n \log \left(\frac{n}{e}\right)
\end{aligned}
$$

Sorting Lower Bound

Lemma

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf. There are n ! leaves. A binary tree of height h has no more than 2^{h} leaves. Hence:

$$
\begin{aligned}
2^{h} & \geq n! \\
h & \geq \log (n!) \geq \log \left(\left(\frac{n}{e}\right)^{n}\right)=n \log \left(\frac{n}{e}\right)=\Omega(n \log n)
\end{aligned}
$$

Stirling's approximation: $n!\geq\left(\frac{n}{e}\right)^{n}$

