Lower Bound for Sorting COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

Can we sort faster?

Can we sort faster than $O(n \log n)$ time?

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

Yes! sometimes

Can we sort faster than $O(n \log n)$ time?

Recall: Fastest runtime of any sorting algorithm seen is $O(n \log n)$

Can we sort faster?

Yes! sometimes, but not all algorithms can

Can we sort faster?

Yes! sometimes, but not all algorithms can, and we generally don't know how to \ldots

Can we sort faster?

Yes! sometimes, but not all algorithms can, and we generally don't know how to \ldots

Example: Sort an array $A \in \{0,1\}^n$ in time O(n)?

Can we sort faster?

Yes! sometimes, but not all algorithms can, and we generally don't know how to \ldots

Example: Sort an array $A \in \{0,1\}^n$ in time O(n)?

- Count number of 0s n₀
- Write n_0 0s followed by $n n_0$ 1s
- Both operations take time O(n)

• Order is determined solely by comparing input elements

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is A[i] ≤ A[j]?", for some i, j, in particular, we may not inspect the elements

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is A[i] ≤ A[j]?", for some i, j, in particular, we may not inspect the elements
- Quicksort, Mergesort, Insertionsort, Heapsort are comparison-based sorting algorithms

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is A[i] ≤ A[j]?", for some i, j, in particular, we may not inspect the elements
- Quicksort, Mergesort, Insertionsort, Heapsort are comparison-based sorting algorithms

Lower Bound for Comparison-based Sorting

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is A[i] ≤ A[j]?", for some i, j, in particular, we may not inspect the elements
- Quicksort, Mergesort, Insertionsort, Heapsort are comparison-based sorting algorithms

Lower Bound for Comparison-based Sorting

 We will prove that every comparison-based sorting algorithm requires Ω(n log n) comparisons

- Order is determined solely by comparing input elements
- All information obtained is by asking "Is A[i] ≤ A[j]?", for some i, j, in particular, we may not inspect the elements
- Quicksort, Mergesort, Insertionsort, Heapsort are comparison-based sorting algorithms

Lower Bound for Comparison-based Sorting

- We will prove that every comparison-based sorting algorithm requires Ω(n log n) comparisons
- This implies that $O(n \log n)$ is an optimal runtime for comparison-based sorting

Problem

Problem

• A : array of length n, all elements are different

Problem

- A : array of length n, all elements are different
- We are only allowed to ask: Is A[i] < A[j], for any $i, j \in [n]$

Problem

- A : array of length n, all elements are different
- We are only allowed to ask: Is A[i] < A[j], for any $i, j \in [n]$
- How many questions are needed until we can determine the order of all elements?

Problem

- A : array of length n, all elements are different
- We are only allowed to ask: Is A[i] < A[j], for any $i, j \in [n]$
- How many questions are needed until we can determine the order of all elements?

Permutations

Problem

- A : array of length n, all elements are different
- We are only allowed to ask: Is A[i] < A[j], for any $i, j \in [n]$
- How many questions are needed until we can determine the order of all elements?

Permutations

• A *bijective* function $\pi : [n] \rightarrow [n]$ is called a permutation

Problem

- A : array of length n, all elements are different
- We are only allowed to ask: Is A[i] < A[j], for any $i, j \in [n]$
- How many questions are needed until we can determine the order of all elements?

Permutations

• A *bijective* function $\pi : [n] \rightarrow [n]$ is called a permutation

Problem

- A : array of length n, all elements are different
- We are only allowed to ask: Is A[i] < A[j], for any $i, j \in [n]$
- How many questions are needed until we can determine the order of all elements?

Permutations

• A *bijective* function $\pi : [n] \rightarrow [n]$ is called a permutation

• A reordering of [n]

How many permutations are there?

Let Π be the set of all permutations on *n* elements

Let Π be the set of all permutations on *n* elements

Lemma

$$|\Pi| = n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$$

Let Π be the set of all permutations on *n* elements

Lemma

$$|\Pi| = n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$$

Proof.

Let Π be the set of all permutations on *n* elements

Lemma

$$|\Pi| = n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$$

Proof. The first element can be mapped to *n* potential elements.

Let Π be the set of all permutations on *n* elements

Lemma

$$|\Pi| = n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$$

Proof. The first element can be mapped to n potential elements. The second can only be mapped to (n-1) elements.

Let Π be the set of all permutations on *n* elements

Lemma

$$|\Pi| = n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$$

Proof. The first element can be mapped to *n* potential elements. The second can only be mapped to (n-1) elements. etc.

Let Π be the set of all permutations on *n* elements

Lemma

 $|\Pi| = n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$

Proof. The first element can be mapped to n potential elements. The second can only be mapped to (n-1) elements. etc.

Rephrasing our Task:

Let Π be the set of all permutations on *n* elements

Lemma

$$|\Pi| = n! = n \cdot (n-1) \dots 3 \cdot 2 \cdot 1$$

Proof. The first element can be mapped to n potential elements. The second can only be mapped to (n-1) elements. etc.

Rephrasing our Task: Find permutation $\pi \in \Pi$ such that:

$$A[\pi^{-1}(1)] < A[\pi^{-1}(2)] < \cdots < A[\pi^{-1}(n-1)] < A[\pi^{-1}(n)]$$

Example:

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c).

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

 $1.a < b < c \qquad 2.a < c < b \qquad 3.c < a < b$

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

1.a < b < c 2.a < c < b 3.c < a < b

Next we either ask a < c or b < c.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

$$1.a < b < c \qquad 2.a < c < b \qquad 3.c < a < b$$

Next we either ask a < c or b < c. Suppose that we ask a < c.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

 $1.a < b < c \qquad 2.a < c < b \qquad 3.c < a < b$

Next we either ask a < c or b < c. Suppose that we ask a < c. Then, if the answer is yes then we are left with cases 1 and 2 and we need an additional query.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

$$1.a < b < c$$
 $2.a < c < b$ $3.c < a < b$

Next we either ask a < c or b < c. Suppose that we ask a < c. Then, if the answer is yes then we are left with cases 1 and 2 and we need an additional query. Suppose that we ask b < c.

Example:

Sort 3 elements by asking queries: A[i] < A[j], for $i, j \in \{0, 1, 2\}$

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first query is a < b and suppose that the answer is yes. (if it is not then relabel the elements a, b, c). We are left with 3 scenarios:

 $1.a < b < c \qquad 2.a < c < b \qquad 3.c < a < b$

Next we either ask a < c or b < c. Suppose that we ask a < c. Then, if the answer is yes then we are left with cases 1 and 2 and we need an additional query. Suppose that we ask b < c. Then, if the answer is no then we are left with cases 2 and 3 and we need an additional query.

6/8

Every Guessing Strategy (and Sorting Algorithm) is a Decision-tree

Every Guessing Strategy (and Sorting Algorithm) is a Decision-tree

Observe:

• Every leaf is a permutation

Every Guessing Strategy (and Sorting Algorithm) is a Decision-tree

Observe:

- Every leaf is a permutation
- An execution is a root-to-leaf path

Sorting Lower Bound

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree.

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf.

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf. There are n! leaves.

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

$$2^h \geq n!$$

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

$$2^{h} \geq n!$$
$$h \geq \log(n!$$

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

$$2^h \ge n!$$

 $h \ge \log(n!) \ge \log\left((\frac{n}{e})^n\right)$

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

$$2^{h} \geq n!$$

$$h \geq \log(n!) \geq \log\left(\left(\frac{n}{e}\right)^{n}\right) = n\log(\frac{n}{e})$$

Any comparison-based sorting algorithm requires $\Omega(n \log n)$ comparisons.

Proof Observe that decision-tree is a binary tree. Every potential permutation is a leaf. There are n! leaves. A binary tree of height h has no more than 2^h leaves. Hence:

$$2^{h} \geq n!$$

$$h \geq \log(n!) \geq \log\left(\left(\frac{n}{e}\right)^{n}\right) = n\log(\frac{n}{e}) = \Omega(n\log n)$$

Stirling's approximation: $n! \ge \left(\frac{n}{e}\right)^n$