Recurrences |

COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

Dr Christian Konrad Recurrences | 1/9



Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

Dr Christian Konrad Recurrences | 2/ 9



Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

© Divide the problem into a number of subproblems that are
smaller instances of the same problem

Dr Christian Konrad Recurrences | 2/ 9



Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer
© Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

Dr Christian Konrad Recurrences |



Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

© Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Dr Christian Konrad Recurrences | 2/ 9



Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

© Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Examples

Dr Christian Konrad Recurrences | 2/ 9



Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

© Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Examples
Quicksort,

Dr Christian Konrad Recurrences | 2/ 9



Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

© Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Examples
Quicksort, Mergesort,

Dr Christian Konrad Recurrences | 2/ 9



Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

© Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Examples
Quicksort, Mergesort, maximum subarray algorithm,

Dr Christian Konrad Recurrences | 2/ 9



Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

© Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Examples
Quicksort, Mergesort, maximum subarray algorithm, binary search,

Dr Christian Konrad Recurrences | 2/ 9



Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer
© Divide the problem into a number of subproblems that are
smaller instances of the same problem
@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Examples
Quicksort, Mergesort, maximum subarray algorithm, binary search,
FAST-PEAK-FINDING, ...
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Example: Mergesort

Recall: Mergesort

@ Divide
Split input array A of length n into subarrays A; = A[0, [n/2]]
and Ay = A[|n/2] +1,n—1]

|12 9|7|2|3|8|15|7|
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Example: Mergesort

Recall: Mergesort

O Divide A — A; and A

@ Conquer
Sort A; and Ay recursively using the same algorithm

|12 9|7|2|3|8|15|7|
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Example: Mergesort

Recall: Mergesort

@ Divide A — A; and A,
@ Conquer Solve A; and A

© Combine
Combine sorted subarrays A; and A, and obtain sorted array A
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Example: Mergesort

Recall: Mergesort

@ Divide A — A; and A,
@ Conquer Solve A; and A

© Combine
Combine sorted subarrays A; and A, and obtain sorted array A

23|7|7|8|9|12|15|
: ST [as

Runtime: (assuming that n is a power of 2)

N
~
o

T(1) = 0Q1)
T(n) = 2T(n/2)+ O(n)
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How to solve Recurrences?

Recurrences
@ Divide-and-Conquer algorithms naturally lead to recurrences

@ How can we solve them? Often only interested in asymptotic
upper bounds

Methods for solving recurrences
@ Substitution method
guess solution, verify, induction

@ Recursion-tree method (previously seen for Mergesort and
maximum subarray problem)
may have plenty of awkward details, provides good guess that
can be verified with substitution method

o Master-theorem
very powerful, cannot always be applied
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The Substitution Method

The Substitution Method

@ Guess the form of the solution

@ Use mathematical induction to find the constants and show
that the solution works

© Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

T(1) = 0(1)
T(n) = 2T(n/2)+ O(n)
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The Substitution Method

The Substitution Method

@ Guess the form of the solution

@ Use mathematical induction to find the constants and show
that the solution works

© Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

T(l) S 1
T(n) < 2T(n/2)+ cn

Eliminate O-notation in recurrence

Step 1. Guess good upper bound

T(n) < Cnlogn
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The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction
n

T(n) < 2T(n/2)+cn < 2C3 log(3

)+ cn
= Cn(log(n) —log(2)) + c2n
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Step 2. Substitute into the Recurrence
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@ Assume that our guess T(n) < Cnlog n is correct for every
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The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

n n
T(n) < 2T(n/2)+ cn < 2C§ Iog(a

= Cn(log(n) — log(2)) + c2n
= Cnlogn—Cn+ cn < Cnlogn,

)+C2n

if we chose C > . vV

Verify the Base Case

T(1)<C-1llog(l)=0
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Step 2. Substitute into the Recurrence
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n <n
@ Corresponds to induction step of a proof by induction
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@ Corresponds to induction step of a proof by induction
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The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

n n
T(n) < 2T(n/2)+ cn < 2C§ Iog(a

= Cn(log(n) — log(2)) + c2n
= Cnlogn—Cn+ cn < Cnlogn,

)+C2n

if we chose C > . vV
Verify the Base Case
T(1)<C-llog(l)=0%fa X

The base case is a problem...
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Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
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T(2) < 2T()+2=2a+2c=2(c+a)
C2log2 = 2C
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Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2

T(2) < 2T()+2=2a+2c=2(c+a)
C2log2 = 2C

Hence, for every C > ¢ + c1, our guess holds for n = 2:
T(2) < C2log2 .

Result
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C>a+a

Dr Christian Konrad Recurrences | 7/ 9



The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2

T(2) < 2T()+2=2a+2c=2(c+a)
C2log2 = 2C

Hence, for every C > ¢ + c1, our guess holds for n = 2:
T(2) < C2log2 .

Result

e We proved T(n) < Cnlogn, for every n > 2, when choosing
C>a+a
@ Observe: This implies T(n) € O(nlogn) (important)

Dr Christian Konrad Recurrences | 7/ 9



The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2
T(2) < 2T()+2=2a+2c=2(c+a)
C2log2 = 2C
Hence, for every C > ¢ + c1, our guess holds for n = 2:
T(2) < C2log2 .

Result

e We proved T(n) < Cnlogn, for every n > 2, when choosing
C>a+a
@ Observe: This implies T(n) € O(nlogn) (important)

Asymptotic notation allows us to chose arbitrary base case
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Example: Give an upper bound on the recurrence

T(1) = 1
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A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1
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T(n) = T([n/2])+ T(ln/2]) +1
Step 1: Guess correct solution T(n) < f(n) := Cn
Step 2: Verify the solution
T(n) < C[n/2]+C|n/2|+1=Cn+1%f(n) X

@ We need a different guess
o Let's try: fi(n) :=Cn+1and fr(n):=Cn—1
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(holds for every positive C)
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Verify Base Case for f;
@ We have: T(1)=1and (1) =C—-12> T(1) for C >2
@ We thus set the constant C in f, to C =2
@ Then f(n) =2n—1> T(n) for every n > 1
@ This implies that T(n) € O(n)

Comments
@ Guessing right can be difficult and requires experience

@ However, recursion tree method can provide a good guess!
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