Recurrences |

COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

Dr Christian Konrad Recurrences | 1/9

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

Dr Christian Konrad Recurrences | 2/ 9

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

© Divide the problem into a number of subproblems that are
smaller instances of the same problem

Dr Christian Konrad Recurrences | 2/ 9

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer
© Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

Dr Christian Konrad Recurrences |

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

© Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Dr Christian Konrad Recurrences | 2/ 9

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

© Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Examples

Dr Christian Konrad Recurrences | 2/ 9

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

© Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Examples
Quicksort,

Dr Christian Konrad Recurrences | 2/ 9

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

© Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Examples
Quicksort, Mergesort,

Dr Christian Konrad Recurrences | 2/ 9

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

© Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Examples
Quicksort, Mergesort, maximum subarray algorithm,

Dr Christian Konrad Recurrences | 2/ 9

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

© Divide the problem into a number of subproblems that are
smaller instances of the same problem

@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Examples
Quicksort, Mergesort, maximum subarray algorithm, binary search,

Dr Christian Konrad Recurrences | 2/ 9

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer
© Divide the problem into a number of subproblems that are
smaller instances of the same problem
@ Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

© Combine the solutions to the subproblems into the solution
for the original problem

Examples
Quicksort, Mergesort, maximum subarray algorithm, binary search,
FAST-PEAK-FINDING, ...

Dr Christian Konrad Recurrences | 2/ 9

Example: Mergesort

Recall: Mergesort

Dr Christian Konrad Recurrences | 3/9

Example: Mergesort

Recall: Mergesort

@ Divide
Split input array A of length n into subarrays A; = A[0, [n/2]]
and Ay = A[|n/2] +1,n—1]

|12 9|7|2|3|8|15|7|

SN EIEIEIE

Dr Christian Konrad Recurrences | 3/9

Example: Mergesort

Recall: Mergesort

O Divide A — A; and A

@ Conquer
Sort A; and Ay recursively using the same algorithm

|12 9|7|2|3|8|15|7|

2|7)0] 2|7 e]

Dr Christian Konrad Recurrences | 3/9

Example: Mergesort

Recall: Mergesort

@ Divide A — A; and A,
@ Conquer Solve A; and A

© Combine
Combine sorted subarrays A; and A, and obtain sorted array A

23|7|7|8|9|12|15|

Dr Christian Konrad Recurrences | 3/9

Example: Mergesort

Recall: Mergesort

@ Divide A — A; and A,
@ Conquer Solve A; and A

© Combine
Combine sorted subarrays A; and A, and obtain sorted array A

23|7|7|8|9|12|15|

Runtime: (assuming that n is a power of 2)

Dr Christian Konrad Recurrences | 3/9

Example: Mergesort

Recall: Mergesort

@ Divide A — A; and A,
@ Conquer Solve A; and A

© Combine
Combine sorted subarrays A; and A, and obtain sorted array A

23|7|7|8|9|12|15|
: ST [as

Runtime: (assuming that n is a power of 2)

N
~
o

1) = o(1)

Dr Christian Konrad Recurrences | 3/9

Example: Mergesort

Recall: Mergesort

@ Divide A — A; and A,
@ Conquer Solve A; and A

© Combine
Combine sorted subarrays A; and A, and obtain sorted array A

23|7|7|8|9|12|15|
: ST [as

Runtime: (assuming that n is a power of 2)

N
~
o

T(1) = 0Q1)
T(n) = 2T(n/2)+ O(n)

Dr Christian Konrad Recurrences | 3/9

How to solve Recurrences?

Recurrences

Dr Christian Konrad Recurrences | 4/ 9

How to solve Recurrences?

Recurrences

@ Divide-and-Conquer algorithms naturally lead to recurrences

Dr Christian Konrad Recurrences | 4/ 9

How to solve Recurrences?

Recurrences
@ Divide-and-Conquer algorithms naturally lead to recurrences

@ How can we solve them?

Dr Christian Konrad Recurrences | 4/ 9

How to solve Recurrences?

Recurrences
@ Divide-and-Conquer algorithms naturally lead to recurrences

@ How can we solve them? Often only interested in asymptotic
upper bounds

Dr Christian Konrad Recurrences | 4/ 9

How to solve Recurrences?

Recurrences
@ Divide-and-Conquer algorithms naturally lead to recurrences

@ How can we solve them? Often only interested in asymptotic
upper bounds

Methods for solving recurrences

Dr Christian Konrad Recurrences | 4/ 9

How to solve Recurrences?

Recurrences
@ Divide-and-Conquer algorithms naturally lead to recurrences

@ How can we solve them? Often only interested in asymptotic
upper bounds

Methods for solving recurrences
@ Substitution method

Dr Christian Konrad Recurrences | 4/ 9

How to solve Recurrences?

Recurrences
@ Divide-and-Conquer algorithms naturally lead to recurrences

@ How can we solve them? Often only interested in asymptotic
upper bounds

Methods for solving recurrences

@ Substitution method
guess solution, verify, induction

Dr Christian Konrad Recurrences | 4/ 9

How to solve Recurrences?

Recurrences
@ Divide-and-Conquer algorithms naturally lead to recurrences

@ How can we solve them? Often only interested in asymptotic
upper bounds

Methods for solving recurrences

@ Substitution method
guess solution, verify, induction

@ Recursion-tree method (previously seen for Mergesort and
maximum subarray problem)

Dr Christian Konrad Recurrences | 4/ 9

How to solve Recurrences?

Recurrences

@ Divide-and-Conquer algorithms naturally lead to recurrences

@ How can we solve them? Often only interested in asymptotic
upper bounds

Methods for solving recurrences
@ Substitution method
guess solution, verify, induction
@ Recursion-tree method (previously seen for Mergesort and
maximum subarray problem)

may have plenty of awkward details, provides good guess that
can be verified with substitution method

Dr Christian Konrad Recurrences |

How to solve Recurrences?

Recurrences

@ Divide-and-Conquer algorithms naturally lead to recurrences

@ How can we solve them? Often only interested in asymptotic
upper bounds

Methods for solving recurrences

@ Substitution method
guess solution, verify, induction

@ Recursion-tree method (previously seen for Mergesort and
maximum subarray problem)

may have plenty of awkward details, provides good guess that
can be verified with substitution method

o Mastertheorem

Dr Christian Konrad Recurrences |

How to solve Recurrences?

Recurrences
@ Divide-and-Conquer algorithms naturally lead to recurrences

@ How can we solve them? Often only interested in asymptotic
upper bounds

Methods for solving recurrences
@ Substitution method
guess solution, verify, induction

@ Recursion-tree method (previously seen for Mergesort and
maximum subarray problem)
may have plenty of awkward details, provides good guess that
can be verified with substitution method

o Master-theorem
very powerful, cannot always be applied

Dr Christian Konrad Recurrences | 4/ 9

The Substitution Method

The Substitution Method

Dr Christian Konrad Recurrences | 5/ 9

The Substitution Method

The Substitution Method

@ Guess the form of the solution

Dr Christian Konrad Recurrences | 5/ 9

The Substitution Method

The Substitution Method

@ Guess the form of the solution

@ Use mathematical induction to find the constants and show
that the solution works

Dr Christian Konrad Recurrences | 5/ 9

The Substitution Method

The Substitution Method
@ Guess the form of the solution

@ Use mathematical induction to find the constants and show
that the solution works

© Method provides an upper bound on the recurrence

Dr Christian Konrad Recurrences | 5/ 9

The Substitution Method

The Substitution Method
@ Guess the form of the solution

@ Use mathematical induction to find the constants and show
that the solution works

© Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

Dr Christian Konrad Recurrences | 5/ 9

The Substitution Method

The Substitution Method

@ Guess the form of the solution

@ Use mathematical induction to find the constants and show
that the solution works

© Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

T(1) = 0(1)
T(n) = 2T(n/2)+ O(n)

Dr Christian Konrad Recurrences | 5/ 9

The Substitution Method

The Substitution Method

@ Guess the form of the solution

@ Use mathematical induction to find the constants and show
that the solution works

© Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

T(l) S 1
T(n) < 2T(n/2)+ cn

Eliminate O-notation in recurrence

Dr Christian Konrad Recurrences | 5/ 9

The Substitution Method

The Substitution Method

@ Guess the form of the solution

@ Use mathematical induction to find the constants and show
that the solution works

© Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

T(l) S 1
T(n) < 2T(n/2)+ cn

Eliminate O-notation in recurrence

Step 1. Guess good upper bound

Dr Christian Konrad Recurrences | 5/ 9

The Substitution Method

The Substitution Method

@ Guess the form of the solution

@ Use mathematical induction to find the constants and show
that the solution works

© Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

T(l) S 1
T(n) < 2T(n/2)+ cn

Eliminate O-notation in recurrence

Step 1. Guess good upper bound

T(n) < Cnlogn

Dr Christian Konrad Recurrences | 5/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence

@ Assume that our guess T(n) < Cnlog n is correct for every
/
n<n

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
/
n<n

@ Corresponds to induction step of a proof by induction

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence

@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

T(n)

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence

@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

T(n) < 2T(n/2)+ con

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence

@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

T(n) < 2T(n/2)+cn < zcg |0g(g)+czn

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction
n

T(n) < 2T(n/2)+cn < 2C3 log(3

)+ cn
= Cn(log(n) —log(2)) + c2n

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction
n n
T(n) < 2T(n/2)+ cn < 2C§ Iog(i
Cn (log(n) — log(2)) + can
= Cnlogn— Cn+ cn

)+C2n

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

n n
T(n) < 2T(n/2)+ cn < 2C§ Iog(i

= Cn(log(n) — log(2)) + c2n
= Cnlogn—Cn+ cn < Cnlogn,

)+C2n

if we chose C > o.

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

n n
T(n) < 2T(n/2)+ cn < 2C§ Iog(i

= Cn(log(n) — log(2)) + c2n
= Cnlogn—Cn+ cn < Cnlogn,

)+C2n

if we chose C > . vV

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

n n
T(n) < 2T(n/2)+ cn < 2C§ Iog(a

= Cn(log(n) — log(2)) + c2n
= Cnlogn—Cn+ cn < Cnlogn,

)+C2n

if we chose C > . vV

Verify the Base Case

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

n n
T(n) < 2T(n/2)+ cn < 2C§ Iog(a

= Cn(log(n) — log(2)) + c2n
= Cnlogn—Cn+ cn < Cnlogn,

)+C2n

if we chose C > . vV

Verify the Base Case

(1)

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

n n
T(n) < 2T(n/2)+ cn < 2C§ Iog(a

= Cn(log(n) — log(2)) + c2n
= Cnlogn—Cn+ cn < Cnlogn,

)+C2n

if we chose C > . vV

Verify the Base Case

T(1) < C-1llog(1)

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

n n
T(n) < 2T(n/2)+ cn < 2C§ Iog(a

= Cn(log(n) — log(2)) + c2n
= Cnlogn—Cn+ cn < Cnlogn,

)+C2n

if we chose C > . vV

Verify the Base Case

T(1)<C-1llog(l)=0

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

n n
T(n) < 2T(n/2)+ cn < 2C§ Iog(a

= Cn(log(n) — log(2)) + c2n
= Cnlogn—Cn+ cn < Cnlogn,

)+C2n

if we chose C > . vV

Verify the Base Case

T(1)<C-llog(l)=0#a

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

n n
T(n) < 2T(n/2)+ cn < 2C§ Iog(a

= Cn(log(n) — log(2)) + c2n
= Cnlogn—Cn+ cn < Cnlogn,

)+C2n

if we chose C > . vV

Verify the Base Case

T(1)<C-llog(l)=0%fa X

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (2)

Step 2. Substitute into the Recurrence
@ Assume that our guess T(n) < Cnlog n is correct for every
n <n
@ Corresponds to induction step of a proof by induction

n n
T(n) < 2T(n/2)+ cn < 2C§ Iog(a

= Cn(log(n) — log(2)) + c2n
= Cnlogn—Cn+ cn < Cnlogn,

)+C2n

if we chose C > . vV
Verify the Base Case
T(1)<C-llog(l)=0%fa X

The base case is a problem...

Dr Christian Konrad Recurrences | 6/ 9

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Dr Christian Konrad Recurrences | 7/ 9

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution:

Dr Christian Konrad Recurrences | 7/ 9

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2

Dr Christian Konrad Recurrences | 7/ 9

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2

T(2)

Dr Christian Konrad Recurrences | 7/ 9

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2

T(2) < 2T(1)+2c

Dr Christian Konrad Recurrences | 7/ 9

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2

T(2) < 2T(1)+2c =2c +2¢

Dr Christian Konrad Recurrences | 7/ 9

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2

T(2) < 2T()+2=2a+2c=2(c+a)

Dr Christian Konrad Recurrences | 7/ 9

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2

T(2) < 2T()+2=2a+2c=2(c+a)
C2log?2

Dr Christian Konrad Recurrences | 7/ 9

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2

T(2) < 2T()+2=2a+2c=2(c+a)
C2log2 = 2C

Dr Christian Konrad Recurrences | 7/ 9

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2

T(2) < 2T()+2=2a+2c=2(c+a)
C2log2 = 2C

Hence, for every C > ¢ + c1, our guess holds for n = 2:

T(2) < C2log2 .

Dr Christian Konrad Recurrences | 7/ 9

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2

T(2) < 2T()+2=2a+2c=2(c+a)
C2log2 = 2C

Hence, for every C > ¢ + c1, our guess holds for n = 2:
T(2) < C2log2 .

Result

Dr Christian Konrad Recurrences | 7/ 9

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2

T(2) < 2T()+2=2a+2c=2(c+a)
C2log2 = 2C

Hence, for every C > ¢ + c1, our guess holds for n = 2:
T(2) < C2log2 .

Result

e We proved T(n) < Cnlogn, for every n > 2, when choosing
C>a+a

Dr Christian Konrad Recurrences | 7/ 9

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2

T(2) < 2T()+2=2a+2c=2(c+a)
C2log2 = 2C

Hence, for every C > ¢ + c1, our guess holds for n = 2:
T(2) < C2log2 .

Result

e We proved T(n) < Cnlogn, for every n > 2, when choosing
C>a+a
@ Observe: This implies T(n) € O(nlogn) (important)

Dr Christian Konrad Recurrences | 7/ 9

The Substitution Method (3)

Recall: T(1)=c¢; and T(n)=2T(n/2)+ con
Our guess: T(n) < Cnlog n (induction step holds for C > ¢)

Solution: Choose a different base case! n =2
T(2) < 2T()+2=2a+2c=2(c+a)
C2log2 = 2C
Hence, for every C > ¢ + c1, our guess holds for n = 2:
T(2) < C2log2 .

Result

e We proved T(n) < Cnlogn, for every n > 2, when choosing
C>a+a
@ Observe: This implies T(n) € O(nlogn) (important)

Asymptotic notation allows us to chose arbitrary base case

Dr Christian Konrad Recurrences | 7/ 9

A Strange Problem

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution T(n) < f(n) := Cn

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution T(n) < f(n) := Cn

Step 2: Verify the solution

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution T(n) < f(n) := Cn

Step 2: Verify the solution

T(n)

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution T(n) < f(n) := Cn

Step 2: Verify the solution

T(n) < Cln/2] 4+ C|n/2] +1

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution T(n) < f(n) := Cn

Step 2: Verify the solution

T(n) < C[n/2]+C|n/2]+1=Cn+1

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution T(n) < f(n) := Cn

Step 2: Verify the solution

T(n) < C[n/2]+C|n/2|+1=Cn+1%f(n) X

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution T(n) < f(n) := Cn

Step 2: Verify the solution

T(n) < C[n/2]+C|n/2|+1=Cn+1%f(n) X

@ We need a different guess

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution T(n) < f(n) := Cn

Step 2: Verify the solution

T(n) < C[n/2]+C|n/2|+1=Cn+1%f(n) X
@ We need a different guess
o Let's try: fi(n) :=Cn+1and fr(n):=Cn—1

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution T(n) < f(n) := Cn

Step 2: Verify the solution

T(n) < C[n/2]+C|n/2|+1=Cn+1%f(n) X
@ We need a different guess
o Let's try: fi(n) :=Cn+1and fr(n):=Cn—1

fl . T(n)

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution T(n) < f(n) := Cn

Step 2: Verify the solution

T(n) < C[n/2]+C|n/2|+1=Cn+1%f(n) X
@ We need a different guess
o Let's try: fi(n) :=Cn+1and fr(n):=Cn—1

fi:T(n) < C[n/2]+1+Cln/2]+1+1

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution T(n) < f(n) := Cn

Step 2: Verify the solution

T(n) < C[n/2]+C|n/2|+1=Cn+1%f(n) X
@ We need a different guess
o Let's try: fi(n) :=Cn+1and fr(n):=Cn—1

fi: T(n) < C[n/2]+14+C[n/2]+1+1=Cn+3

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution T(n) < f(n) := Cn

Step 2: Verify the solution

T(n) < C[n/2]+C|n/2|+1=Cn+1%f(n) X
@ We need a different guess
o Let's try: fi(n) :=Cn+1and fr(n):=Cn—1

fi: T(n) < C[n/2]4+14+C[n/2]+1+1=Cn+3<£ fi(n)

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution T(n) < f(n) := Cn

Step 2: Verify the solution

T(n) < C[n/2]+C|n/2|+1=Cn+1%f(n) X
@ We need a different guess
o Let's try: fi(n) :=Cn+1and fr(n):=Cn—1

fi: T(n) < C[n/2]4+1+C[n/2]+14+1=Cn+3<f(n)X

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence

T(1) = 1
T(n) = T([n/2])+ T([n/2])+1

Step 1: Guess correct solution T(n) < f(n) := Cn

Step 2: Verify the solution

T(n) < C[n/2]+C|n/2|+1=Cn+1%f(n) X
@ We need a different guess
o Let's try: fi(n) :=Cn+1and fr(n):=Cn—1

fi: T(n) < C[n/2]4+1+C[n/2]+14+1=Cn+3<f(n)X
fa: T(n)

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence
T(1) =1
T(n) = T([n/2])+ T(ln/2]) +1
Step 1: Guess correct solution T(n) < f(n) := Cn
Step 2: Verify the solution
T(n) < C[n/2]+C|n/2|+1=Cn+1%f(n) X

@ We need a different guess
o Let's try: fi(n) :=Cn+1and fr(n):=Cn—1

fi: T(n) < C[n/2]4+1+C[n/2]+14+1=Cn+3<f(n)X
f,: T(n) < C[n/2] —1+C|n/2] —1+1

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence
T(1) =1
T(n) = T([n/2])+ T(ln/2]) +1
Step 1: Guess correct solution T(n) < f(n) := Cn
Step 2: Verify the solution
T(n) < C[n/2]+C|n/2|+1=Cn+1%f(n) X

@ We need a different guess
o Let's try: fi(n) :=Cn+1and fr(n):=Cn—1

fi: T(n) < C[n/2]4+1+C[n/2]+14+1=Cn+3<f(n)X
fb: T(n) < Cin/2]-14+C|n/2]-1+1=Cn-1

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence
T(1) =1
T(n) = T([n/2])+ T(ln/2]) +1
Step 1: Guess correct solution T(n) < f(n) := Cn
Step 2: Verify the solution
T(n) < C[n/2]+C|n/2|+1=Cn+1%f(n) X

@ We need a different guess
o Let's try: fi(n) :=Cn+1and fr(n):=Cn—1

fi: T(n) < C[n/2]4+1+C[n/2]+14+1=Cn+3<f(n)X
fo: T(n) < C[n/2] =1+ C|n/2] —14+1=Cn—1=1f(n)

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem

Example: Give an upper bound on the recurrence
T(1) =1
T(n) = T([n/2])+ T(ln/2]) +1
Step 1: Guess correct solution T(n) < f(n) := Cn
Step 2: Verify the solution
T(n) < C[n/2]+C|n/2|+1=Cn+1%f(n) X

@ We need a different guess
o Let's try: fi(n) :=Cn+1and fr(n):=Cn—1

fi: T(n) < C[n/2]4+1+C[n/2]+14+1=Cn+3<f(n)X
fo: T(n) < C[n/2]=14+C|n/2] —141=Cn—1=1f(n)V

(holds for every positive C)

Dr Christian Konrad Recurrences | 8/ 9

A Strange Problem (2)

Verify Base Case for f;

Dr Christian Konrad Recurrences | 9/ 9

A Strange Problem (2)

Verify Base Case for f;
@ We have: T(1)=1and (1) =C—-12> T(1) for C >2

Dr Christian Konrad Recurrences | 9/ 9

A Strange Problem (2)

Verify Base Case for f;
@ We have: T(1)=1and (1) =C—-12> T(1) for C >2
@ We thus set the constant C in f, to C =2

Dr Christian Konrad Recurrences | 9/ 9

A Strange Problem (2)

Verify Base Case for f;
@ We have: T(1)=1and (1) =C—-12> T(1) for C >2
@ We thus set the constant C in f, to C =2
@ Then f(n) =2n—1> T(n) for every n > 1

Dr Christian Konrad Recurrences | 9/ 9

A Strange Problem (2)

Verify Base Case for f;
@ We have: T(1)=1and (1) =C—-12> T(1) for C >2
@ We thus set the constant C in f, to C =2
@ Then f(n) =2n—1> T(n) for every n > 1
@ This implies that T(n) € O(n)

Dr Christian Konrad Recurrences | 9/ 9

A Strange Problem (2)

Verify Base Case for f;
@ We have: T(1)=1and (1) =C—-12> T(1) for C >2
@ We thus set the constant C in f, to C =2
@ Then f(n) =2n—1> T(n) for every n > 1
@ This implies that T(n) € O(n)

Comments

Dr Christian Konrad Recurrences | 9/ 9

A Strange Problem (2)

Verify Base Case for f;
@ We have: T(1)=1and (1) =C—-12> T(1) for C >2
@ We thus set the constant C in f, to C =2
@ Then f(n) =2n—1> T(n) for every n > 1
@ This implies that T(n) € O(n)

Comments

@ Guessing right can be difficult and requires experience

Dr Christian Konrad Recurrences | 9/ 9

A Strange Problem (2)

Verify Base Case for f;
@ We have: T(1)=1and (1) =C—-12> T(1) for C >2
@ We thus set the constant C in f, to C =2
@ Then f(n) =2n—1> T(n) for every n > 1
@ This implies that T(n) € O(n)

Comments
@ Guessing right can be difficult and requires experience

@ However, recursion tree method can provide a good guess!

Dr Christian Konrad Recurrences | 9/ 9

