
Exercise Sheet 8

COMS10017 Algorithms 2022/2023

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

1 Recurrences

Consider the recurrence T (n) := T (bn3 c) + T (b2n3 c) + n, for every n ≥ 2 and T (2) = T (1) = 1.

1. Use the recursion tree method to come up with a guess for an upper bound on the recur-
rence (in Big-O notation).

Hint: Ignore the floor operations. Determine the depth of the recursion tree. Determine
the “work” that is done in each level of the recursion tree. Sum up the work done in each
level to obtain a suitable guess for an upper bound on T .

2. Use the substitution method to prove that the guess obtained in the previous exercise is
correct.

Hint: 0.5 ≤ log(3/2)

2 Analysis of a Recursive Algorithm

Consider the algorithm Alg listed as Algorithm 1:

Algorithm 1 ALG(n)

Require: Integer array A of length n ≥ 1, n is a power of two
S ← 0
for i← 0 . . . n− 1 do

S ← S + A[i]
end for
if n ≤ 1 then

return S
else

return S −ALG(A[0, n2 − 1])−ALG(A[n2 , n− 1])
end if

We assume that the length n of the input array in ALG is always a power of two, i.e.,
n ∈ {1, 2, 4, 8, 16, . . . }.

1. Let A = 1, 2, 3, 4 and let B = 1, 2, 3, 4, 5, 6, 7, 8. Draw the recursion trees of the calls
ALG(A) and ALG(B). For both trees, annotate each node with the value that is returned
by the function call that corresponds to this node.

1



2. Recall that n is a power of two. Let T (n) be the number of times the function ALG
(listed in Algorithm 1) is executed when invoked on an input array of length n (including
the initial invocation on the array of length n). Give a recursive definition of T (n).

3. Let T (n) be the function defined in the previous exercise. Use the substitution method
to show that T (n) ∈ O(n).

4. What is the runtime of Alg?

5. Recall that n is a power of two. Describe an algorithm with best-case runtime Θ(1) and
worst-case runtime Θ(n) that computes the exact same output as Alg.

3 Divide-and-Conquer and the Number of Subproblems

In this exercise, we assume that n is a power of two. We consider a divide-and-conquer algorithm
that, on an input of length n ≥ 2, executes k recursive calls, each on inputs of lengths n/2, for
some integer k ≥ 1. The divide and combine phases of the divide-and-conquer algorithm on an
instance of size n have a runtime of O(n). We also assume that the runtime on an instance of
length 1 is O(1).

1. What is the runtime of the algorithm if k = 1?

2. What is the runtime of the algorithm if k = 2?

3. What is the runtime of the algorithm if k = 3?

4 Search in a Sorted Matrix (Difficult!)

We assume in this exercise that n is a power-of-two.
We are given an n-by-n integer matrix A that is sorted both row- and column-wise, i.e.,

every row is sorted in non-decreasing order from left to right, and every column is sorted in
non-decreasing order from top to bottom. Give a divide-and-conquer algorithm that answers
the question:

“Given an integer x, does A contain x?”

What is the runtime of your algorithm?

2


