Peak Finding COMS10017 - Algorithms 1

Dr Christian Konrad

Let $A=a_0,a_1,\ldots,a_{n-1}$ be an array of integers of length n

0									
<i>a</i> ₀	a_1	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₄	<i>a</i> ₅	<i>a</i> ₆	a ₇	a 8	a 9

Let $A = a_0, a_1, \dots, a_{n-1}$ be an array of integers of length n

0									
<i>a</i> ₀	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	<i>a</i> ₄	<i>a</i> ₅	<i>a</i> ₆	a ₇	<i>a</i> ₈	a 9

Definition: (Peak)

Integer a_i is a peak if adjacent integers are not larger than a_i

Let $A = a_0, a_1, \dots, a_{n-1}$ be an array of integers of length n

Definition: (Peak)

Integer a_i is a peak if adjacent integers are not larger than a_i

Example:

Let $A = a_0, a_1, \dots, a_{n-1}$ be an array of integers of length n

Definition: (Peak)

Integer a_i is a peak if adjacent integers are not larger than a_i

Example:

Peak Finding: Simple Algorithm

Problem PEAK FINDING: Write algorithm with properties:

- **Input:** An integer array of length *n*
- **Output:** A position $0 \le i \le n-1$ such that a_i is a peak

Peak Finding: Simple Algorithm

Problem PEAK FINDING: Write algorithm with properties:

- **1 Input:** An integer array of length *n*
- **② Output:** A position $0 \le i \le n-1$ such that a_i is a peak

```
int peak(int *A, int len) {
    if(A[0] >= A[1])
      return 0;
    if(A[len-1] >= A[len-2])
        return len -1:
    for (int i=1; i < len -1; i=i+1) {
        if(A[i]) = A[i-1] \&\& A[i] >= A[i+1]
            return i:
    return -1;
```

C++ code

Peak Finding: Simple Algorithm

Problem PEAK FINDING: Write algorithm with properties:

- **Input:** An integer array of length *n*
- **② Output:** A position $0 \le i \le n-1$ such that a_i is a peak

```
Require: Integer array A of length n if A[0] \geq A[1] then return 0 if A[n-1] \geq A[n-2] then return n-1 for i=1\dots n-2 do
if A[i] \geq A[i-1] and A[i] \geq A[i+1] then return i return -1
```

Pseudo code

Is Peak Finding well defined? Does every array have a peak?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

0	1	2	3	4	5	6
<i>a</i> ₀	a_1	a ₂	<i>a</i> ₃	<i>a</i> ₄	a ₅	a ₆

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Every maximum is a peak. (Shorter and immediately convincing!)

How fast is our Algorithm?

```
Require: Integer array A of length n if A[0] \geq A[1] then return 0 if A[n-1] \geq A[n-2] then return n-1 for i=1\dots n-2 do
if A[i] \geq A[i-1] and A[i] \geq A[i+1] then return i return i
```

How often do we look at the array elements? (worst case!)

• A[0] and A[n-1]:

How fast is our Algorithm?

```
Require: Integer array A of length n if A[0] \geq A[1] then return 0 if A[n-1] \geq A[n-2] then return n-1 for i=1\dots n-2 do if A[i] \geq A[i-1] and A[i] \geq A[i+1] then return i return i
```

How often do we look at the array elements? (worst case!)

• A[0] and A[n-1]: twice

How fast is our Algorithm?

```
Require: Integer array A of length n if A[0] \geq A[1] then return 0 if A[n-1] \geq A[n-2] then return n-1 for i=1\dots n-2 do if A[i] \geq A[i-1] and A[i] \geq A[i+1] then return i return i
```

- A[0] and A[n-1]: twice
- $A[1] \dots A[n-2]$:

How fast is our Algorithm?

```
Require: Integer array A of length n if A[0] \geq A[1] then return 0 if A[n-1] \geq A[n-2] then return n-1 for i=1\dots n-2 do if A[i] \geq A[i-1] and A[i] \geq A[i+1] then return i return i
```

- A[0] and A[n-1]: twice
- A[1] ... A[n-2]: 4 times (at most)

How fast is our Algorithm?

```
Require: Integer array A of length n if A[0] \geq A[1] then return 0 if A[n-1] \geq A[n-2] then return n-1 for i=1\dots n-2 do if A[i] \geq A[i-1] and A[i] \geq A[i+1] then return i return i
```

- A[0] and A[n-1]: twice
- A[1] ... A[n-2]: 4 times (at most)
- Overall: $2+2+(n-2)\cdot 4=4(n-1)$

How fast is our Algorithm?

```
Require: Integer array A of length n if A[0] \geq A[1] then return 0 if A[n-1] \geq A[n-2] then return n-1 for i=1\dots n-2 do if A[i] \geq A[i-1] and A[i] \geq A[i+1] then return i return i
```

- A[0] and A[n-1]: twice Can we do better?!
- A[1] ... A[n-2]: 4 times (at most)
- Overall: $2+2+(n-2)\cdot 4=4(n-1)$

Peak Finding: An even faster Algorithm

Finding Peaks even Faster: Fast-Peak-Finding

- **1 if** *A* is of length 1 **then return** 0
- ② if A is of length 2 then compare A[0] and A[1] and return position of larger element
- **3** if $A[\lfloor n/2 \rfloor]$ is a peak then return $\lfloor n/2 \rfloor$
- **⊙** Otherwise, if $A[\lfloor n/2 \rfloor 1] \ge A[\lfloor n/2 \rfloor]$ then return Fast-Peak-Finding $(A[0, \lfloor n/2 \rfloor 1])$
- else return $\lfloor n/2 \rfloor + 1+$ FAST-PEAK-FINDING($A[\lfloor n/2 \rfloor + 1, n-1]$)

Comments:

- Fast-Peak-Finding is recursive (it calls itself)
- |x| is the floor function ([x]: ceiling)

Example:

-	_	_	-		-	-		-	-					14		
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22	

Example:

Check whether A[|n/2|] = A[|16/2|] = A[8] is a peak

Example:

If $A[7] \ge A[8]$ then return Fast-Peak-Finding(A[0,7])

Example:

			3												
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Length of subarray is 8

Example:

Check whether A[|n/2|] = A[|8/2|] = A[4] is a peak

Example:

If $A[3] \ge A[4]$ then return Fast-Peak-Finding(A[0,3])

Example:

			3												
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Length of subarray is 4

Example:

									9						
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Check whether A[|n/2|] = A[|4/2|] = A[2] is a peak

Example:

If $A[1] \ge A[2]$ then return Fast-Peak-Finding(A[0,1])

Example:

			3												
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Else return Fast-Peak-Finding(A[3]), which returns 3

How often does the Algorithm look at the array elements?

How often does the Algorithm look at the array elements?

• Without the recursive calls, the algorithm looks at the array elements at most 5 times

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let R(n) be the number of calls to FAST-PEAK-FINDING when the input array is of length n. Then:

$$R(1) = R(2) = 1$$

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let R(n) be the number of calls to FAST-PEAK-FINDING when the input array is of length n. Then:

$$R(1) = R(2) = 1$$

$$R(n) \le$$

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let R(n) be the number of calls to FAST-PEAK-FINDING when the input array is of length n. Then:

$$R(1) = R(2) = 1$$

 $R(n) \le R(\lfloor n/2 \rfloor) + 1$, for $n \ge 3$.

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let R(n) be the number of calls to FAST-PEAK-FINDING when the input array is of length n. Then:

$$R(1) = R(2) = 1$$

 $R(n) \le R(\lfloor n/2 \rfloor) + 1$, for $n \ge 3$.

Solving the recurrence (see lecture on recurrences):

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let R(n) be the number of calls to FAST-PEAK-FINDING when the input array is of length n. Then:

$$R(1) = R(2) = 1$$

 $R(n) \le R(\lfloor n/2 \rfloor) + 1$, for $n \ge 3$.

Solving the recurrence (see lecture on recurrences):

$$R(n) \leq R(\lfloor n/2 \rfloor) + 1 \leq R(n/2) + 1 = R(\lfloor n/4 \rfloor) + 2$$

$$\leq R(n/4) + 2 = \cdots \leq \lceil \log n \rceil.$$

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let R(n) be the number of calls to FAST-PEAK-FINDING when the input array is of length n. Then:

$$R(1) = R(2) = 1$$

 $R(n) \le R(\lfloor n/2 \rfloor) + 1$, for $n \ge 3$.

Solving the recurrence (see lecture on recurrences):

$$R(n) \leq R(\lfloor n/2 \rfloor) + 1 \leq R(n/2) + 1 = R(\lfloor n/4 \rfloor) + 2$$

$$\leq R(n/4) + 2 = \cdots \leq \lceil \log n \rceil.$$

• Hence, we look at most at $5\lceil \log n \rceil$ array elements!

Peak Finding: Correctness

Why is the Algorithm correct?!

Steps 1,2,3 are clearly correct

- 1 if A is of length 1 then return 0
- ② if A is of length 2 then compare A[0] and A[1] and return position of larger element
- **3** if $A[\lfloor n/2 \rfloor]$ is a peak then return $\lfloor n/2 \rfloor$
- **1** Otherwise, if $A[\lfloor n/2 \rfloor 1] \ge A[\lfloor n/2 \rfloor]$ then return FAST-PEAK-FINDING($A[0, \lfloor n/2 \rfloor 1]$)
- **5** else return $\lfloor n/2 \rfloor + 1 +$ FAST-PEAK-FINDING($A[\lfloor n/2 \rfloor + 1, n-1]$)

Why is step 4 correct? (step 5 is similar)

Peak Finding: Correctness

Why is the Algorithm correct?!

Steps 1,2,3 are clearly correct

- 1 if A is of length 1 then return 0
- ② if A is of length 2 then compare A[0] and A[1] and return position of larger element
- **3** if $A[\lfloor n/2 \rfloor]$ is a peak then return $\lfloor n/2 \rfloor$
- Otherwise, if $A[\lfloor n/2 \rfloor 1] \ge A[\lfloor n/2 \rfloor]$ then return FAST-PEAK-FINDING($A[0, \lfloor n/2 \rfloor 1]$)
- **5** else return $\lfloor n/2 \rfloor + 1 +$ FAST-PEAK-FINDING($A[\lfloor n/2 \rfloor + 1, n-1]$)

Why is step 4 correct? (step 5 is similar)

• Need to prove: peak in $A[0, \lfloor n/2 \rfloor - 1]$ is a peak in A

Peak Finding: Correctness

Why is the Algorithm correct?!

Steps 1,2,3 are clearly correct

- 1 if A is of length 1 then return 0
- ② if A is of length 2 then compare A[0] and A[1] and return position of larger element
- **3** if $A[\lfloor n/2 \rfloor]$ is a peak then return $\lfloor n/2 \rfloor$
- Otherwise, if $A[\lfloor n/2 \rfloor 1] \ge A[\lfloor n/2 \rfloor]$ then return FAST-PEAK-FINDING($A[0, \lfloor n/2 \rfloor 1]$)
- 6 else return $\lfloor n/2 \rfloor + 1+$ FAST-PEAK-FINDING($A[\lfloor n/2 \rfloor + 1, n-1]$)

Why is step 4 correct? (step 5 is similar)

- Need to prove: peak in A[0, |n/2| 1] is a peak in A
- This is trivially true for every position $i < \lfloor n/2 \rfloor 1$, since both cells adjacent to A[i] are also contained in $A[0, \lfloor n/2 \rfloor 1]$
- Critical case: $\lfloor n/2 \rfloor 1$ is a peak in $A[0, \lfloor n/2 \rfloor 1]$

Peak Finding: Correctness (2)

Why is the Algorithm correct?!

Steps 1,2,3 are clearly correct

- 1 if A is of length 1 then return 0
- ② if A is of length 2 then compare A[0] and A[1] and return position of larger element
- **3** if $A[\lfloor n/2 \rfloor]$ is a peak then return $\lfloor n/2 \rfloor$
- ① Otherwise, if $A[\lfloor n/2 \rfloor 1] \ge A[\lfloor n/2 \rfloor]$ then return FAST-PEAK-FINDING $(A[0, \lfloor n/2 \rfloor 1])$
- else return $\lfloor n/2 \rfloor + 1 +$ Fast-Peak-Finding $(A[\lfloor n/2 \rfloor + 1, n-1])$
- Critical case: |n/2| 1 is a peak in A[0, |n/2| 1]
- Need to guarantee that $A[\lfloor n/2 \rfloor] \le A[\lfloor n/2 \rfloor 1]$ since otherwise $\lfloor n/2 \rfloor 1$ would not be a peak
- This, however, follows from the condition in step 4!

Conclusion: $5 \log n$ is so much better than 4(n-1)!