Peak Finding
 COMS10017 - Algorithms 1

Dr Christian Konrad

Peak Finding

Let $A=a_{0}, a_{1}, \ldots, a_{n-1}$ be an array of integers of length n

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a_{0} | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} | a_{7} | a_{8} | a_{9} |

Peak Finding

Let $A=a_{0}, a_{1}, \ldots, a_{n-1}$ be an array of integers of length n

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a_{0} | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} | a_{7} | a_{8} | a_{9} |

Definition: (Peak)
Integer a_{i} is a peak if adjacent integers are not larger than a_{i}

Peak Finding

Let $A=a_{0}, a_{1}, \ldots, a_{n-1}$ be an array of integers of length n

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a_{0} | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} | a_{7} | a_{8} | a_{9} |

Definition: (Peak)
Integer a_{i} is a peak if adjacent integers are not larger than a_{i}

Example:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 4 & 3 & 9 & 10 & 14 & 8 & 7 & 2 & 2 & 2 \\
\hline
\end{array}
$$

Peak Finding

Let $A=a_{0}, a_{1}, \ldots, a_{n-1}$ be an array of integers of length n

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a_{0} | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} | a_{7} | a_{8} | a_{9} |

Definition: (Peak)
Integer a_{i} is a peak if adjacent integers are not larger than a_{i}

Example:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 4 & 3 & 9 & 10 & 14 & 8 & 7 & 2 & 2 & 2 \\
\hline
\end{array}
$$

Peak Finding: Simple Algorithm

Problem Peak Finding: Write algorithm with properties:
(1) Input: An integer array of length n
(2) Output: A position $0 \leq i \leq n-1$ such that a_{i} is a peak

Peak Finding: Simple Algorithm

Problem Peak Finding: Write algorithm with properties:
(1) Input: An integer array of length n
(2) Output: A position $0 \leq i \leq n-1$ such that a_{i} is a peak

```
int peak(int *A, int len) {
    if(A[0] >= A[1])
        return 0;
    if(A[Ien-1] >= A[Ien-2])
        return len -1;
    for(int i=1; i < len - 1; i=i+1) {
        if(A[i] >= A[i-1] && A[i] >= A[i+1])
        return i;
        }
    return -1;
}
```

$$
\text { C }++ \text { code }
$$

Peak Finding: Simple Algorithm

Problem Peak Finding: Write algorithm with properties:
(1) Input: An integer array of length n
(2) Output: A position $0 \leq i \leq n-1$ such that a_{i} is a peak

```
Require: Integer array \(A\) of length \(n\)
    if \(A[0] \geq A[1]\) then
        return 0
    if \(A[n-1] \geq A[n-2]\) then
        return \(n-1\)
    for \(i=1 \ldots n-2\) do
        if \(A[i] \geq A[i-1]\) and \(A[i] \geq A[i+1]\) then
        return \(i\)
    return -1
```

Pseudo code

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a contradiction that A does not have a peak. Then $a_{1}>a_{0}$ since otherwise a_{0} is a peak. But then $a_{2}>a_{1}$ since otherwise a_{1} is a peak. Continuing, for the same reason, $a_{i}>a_{i-1}$ since otherwise a_{i-1} is a peak, for every $i \leq n-1$. But this implies $a_{n-1}>a_{n-2}$ and hence a_{n-1} is a peak. A contradiction. Hence, every array has a peak.

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a_{0} | a_{1} | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} |

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a contradiction that A does not have a peak. Then $a_{1}>a_{0}$ since otherwise a_{0} is a peak. But then $a_{2}>a_{1}$ since otherwise a_{1} is a peak. Continuing, for the same reason, $a_{i}>a_{i-1}$ since otherwise a_{i-1} is a peak, for every $i \leq n-1$. But this implies $a_{n-1}>a_{n-2}$ and hence a_{n-1} is a peak. A contradiction. Hence, every array has a peak.

| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a_{0} | $>a_{0}$ | a_{2} | a_{3} | a_{4} | a_{5} | a_{6} |

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a contradiction that A does not have a peak. Then $a_{1}>a_{0}$ since otherwise a_{0} is a peak. But then $a_{2}>a_{1}$ since otherwise a_{1} is a peak. Continuing, for the same reason, $a_{i}>a_{i-1}$ since otherwise a_{i-1} is a peak, for every $i \leq n-1$. But this implies $a_{n-1}>a_{n-2}$ and hence a_{n-1} is a peak. A contradiction. Hence, every array has a peak.

0	1	2	3	4	5	6
a_{0}	$>a_{0}$	$>a_{1}$	a_{3}	a_{4}	a_{5}	a_{6}

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a contradiction that A does not have a peak. Then $a_{1}>a_{0}$ since otherwise a_{0} is a peak. But then $a_{2}>a_{1}$ since otherwise a_{1} is a peak. Continuing, for the same reason, $a_{i}>a_{i-1}$ since otherwise a_{i-1} is a peak, for every $i \leq n-1$. But this implies $a_{n-1}>a_{n-2}$ and hence a_{n-1} is a peak. A contradiction. Hence, every array has a peak.

0	1	2				
a_{0}	$>a_{0}$	$>a_{1}$	$>a_{2}$	$>a_{3}$	$>a_{4}$	$>a_{5}$

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Every maximum is a peak. (Shorter and immediately convincing!)

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

```
Require: Integer array \(A\) of length \(n\)
    if \(A[0] \geq A[1]\) then
        return 0
    if \(A[n-1] \geq A[n-2]\) then
        return \(n-1\)
    for \(i=1 \ldots n-2\) do
        if \(A[i] \geq A[i-1]\) and \(A[i] \geq A[i+1]\) then
        return \(i\)
    return -1
```

How often do we look at the array elements? (worst case!)

- $A[0]$ and $A[n-1]$:

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

```
Require: Integer array \(A\) of length \(n\)
    if \(A[0] \geq A[1]\) then
        return 0
    if \(A[n-1] \geq A[n-2]\) then
        return \(n-1\)
    for \(i=1 \ldots n-2\) do
        if \(A[i] \geq A[i-1]\) and \(A[i] \geq A[i+1]\) then
        return \(i\)
    return -1
```

How often do we look at the array elements? (worst case!)

- $A[0]$ and $A[n-1]$: twice

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

```
Require: Integer array \(A\) of length \(n\)
    if \(A[0] \geq A[1]\) then
        return 0
    if \(A[n-1] \geq A[n-2]\) then
        return \(n-1\)
    for \(i=1 \ldots n-2\) do
        if \(A[i] \geq A[i-1]\) and \(A[i] \geq A[i+1]\) then
        return \(i\)
    return -1
```

How often do we look at the array elements? (worst case!)

- $A[0]$ and $A[n-1]$: twice
- $A[1] \ldots A[n-2]$:

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

```
Require: Integer array \(A\) of length \(n\)
    if \(A[0] \geq A[1]\) then
        return 0
    if \(A[n-1] \geq A[n-2]\) then
        return \(n-1\)
    for \(i=1 \ldots n-2\) do
        if \(A[i] \geq A[i-1]\) and \(A[i] \geq A[i+1]\) then
        return \(i\)
    return -1
```

How often do we look at the array elements? (worst case!)

- $A[0]$ and $A[n-1]$: twice
- $A[1] \ldots A[n-2]: 4$ times (at most)

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

```
Require: Integer array \(A\) of length \(n\)
    if \(A[0] \geq A[1]\) then
        return 0
    if \(A[n-1] \geq A[n-2]\) then
        return \(n-1\)
    for \(i=1 \ldots n-2\) do
        if \(A[i] \geq A[i-1]\) and \(A[i] \geq A[i+1]\) then
        return \(i\)
    return -1
```

How often do we look at the array elements? (worst case!)

- $A[0]$ and $A[n-1]$: twice
- $A[1] \ldots A[n-2]: 4$ times (at most)
- Overall: $2+2+(n-2) \cdot 4=4(n-1)$

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

```
Require: Integer array \(A\) of length \(n\)
    if \(A[0] \geq A[1]\) then
        return 0
    if \(A[n-1] \geq A[n-2]\) then
        return \(n-1\)
    for \(i=1 \ldots n-2\) do
        if \(A[i] \geq A[i-1]\) and \(A[i] \geq A[i+1]\) then
        return \(i\)
    return -1
```

How often do we look at the array elements? (worst case!)

- $A[0]$ and $A[n-1]$: twice

Can we do better?!

- $A[1] \ldots A[n-2]: 4$ times (at most)
- Overall: $2+2+(n-2) \cdot 4=4(n-1)$

Peak Finding: An even faster Algorithm

Finding Peaks even Faster: Fast-Peak-Finding
(1) if A is of length 1 then return 0
(2) if A is of length 2 then compare $A[0]$ and $A[1]$ and return position of larger element
(3) if $A[\lfloor n / 2\rfloor]$ is a peak then return $\lfloor n / 2\rfloor$
(3) Otherwise, if $A[\lfloor n / 2\rfloor-1] \geq A[\lfloor n / 2\rfloor]$ then return Fast-Peak-Finding($A[0,\lfloor n / 2\rfloor-1])$
(5) else
return $\lfloor n / 2\rfloor+1+$
Fast-Peak-Finding $(A[\lfloor n / 2\rfloor+1, n-1])$

Comments:

- Fast-Peak-Finding is recursive (it calls itself)
- $\lfloor x\rfloor$ is the floor function ($\lceil x\rceil$: ceiling)

Peak Finding: Example

Example:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Peak Finding: Example

Example:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: |
| 3 | 7 | 22 | 47 | 36 | 33 | 31 | 30 | 25 | 21 | 20 | 15 | 7 | 4 | 10 | 22 |

Check whether $A[\lfloor n / 2\rfloor]=A[\lfloor 16 / 2\rfloor]=A[8]$ is a peak

Peak Finding: Example

Example:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: |
| 3 | 7 | 22 | 47 | 36 | 33 | 31 | 30 | 25 | 21 | 20 | 15 | 7 | 4 | 10 | 22 |

If $A[7] \geq A[8]$ then return Fast-PEak-Finding $(A[0,7])$

Peak Finding: Example

Example:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Length of subarray is 8

Peak Finding: Example

Example:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Check whether $A[\lfloor n / 2\rfloor]=A[\lfloor 8 / 2\rfloor]=A[4]$ is a peak

Peak Finding: Example

Example:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

If $A[3] \geq A[4]$ then return Fast-PEak-Finding $(A[0,3])$

Peak Finding: Example

Example:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Length of subarray is 4

Peak Finding: Example

Example:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Check whether $A[\lfloor n / 2\rfloor]=A[\lfloor 4 / 2\rfloor]=A[2]$ is a peak

Peak Finding: Example

Example:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

If $A[1] \geq A[2]$ then return Fast-PEak-Finding $(A[0,1])$

Peak Finding: Example

Example:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
3	7	22	47	36	33	31	30	25	21	20	15	7	4	10	22

Else return Fast-PEAK-Finding $(A[3])$, which returns 3

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let $R(n)$ be the number of calls to Fast-Peak-Finding when the input array is of length n. Then:

$$
R(1)=R(2)=1
$$

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let $R(n)$ be the number of calls to Fast-Peak-Finding when the input array is of length n. Then:

$$
\begin{aligned}
& R(1)=R(2)=1 \\
& R(n) \leq
\end{aligned}
$$

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let $R(n)$ be the number of calls to Fast-Peak-Finding when the input array is of length n. Then:

$$
\begin{aligned}
& R(1)=R(2)=1 \\
& R(n) \leq R(\lfloor n / 2\rfloor)+1, \text { for } n \geq 3
\end{aligned}
$$

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let $R(n)$ be the number of calls to Fast-Peak-Finding when the input array is of length n. Then:

$$
\begin{aligned}
& R(1)=R(2)=1 \\
& R(n) \leq R(\lfloor n / 2\rfloor)+1, \text { for } n \geq 3
\end{aligned}
$$

- Solving the recurrence (see lecture on recurrences):

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let $R(n)$ be the number of calls to Fast-Peak-Finding when the input array is of length n. Then:

$$
\begin{aligned}
& R(1)=R(2)=1 \\
& R(n) \leq R(\lfloor n / 2\rfloor)+1, \text { for } n \geq 3
\end{aligned}
$$

- Solving the recurrence (see lecture on recurrences):

$$
\begin{aligned}
R(n) & \leq R(\lfloor n / 2\rfloor)+1 \leq R(n / 2)+1=R(\lfloor n / 4\rfloor)+2 \\
& \leq R(n / 4)+2=\cdots \leq\lceil\log n\rceil .
\end{aligned}
$$

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

- Without the recursive calls, the algorithm looks at the array elements at most 5 times
- Let $R(n)$ be the number of calls to Fast-Peak-Finding when the input array is of length n. Then:

$$
\begin{aligned}
& R(1)=R(2)=1 \\
& R(n) \leq R(\lfloor n / 2\rfloor)+1, \text { for } n \geq 3
\end{aligned}
$$

- Solving the recurrence (see lecture on recurrences):

$$
\begin{aligned}
R(n) & \leq R(\lfloor n / 2\rfloor)+1 \leq R(n / 2)+1=R(\lfloor n / 4\rfloor)+2 \\
& \leq R(n / 4)+2=\cdots \leq\lceil\log n\rceil .
\end{aligned}
$$

- Hence, we look at most at $5\lceil\log n\rceil$ array elements!

Peak Finding: Correctness

Why is the Algorithm correct?!

(1) if A is of length 1 then return 0
(2) if A is of length 2 then compare $A[0]$ and $A[1]$ and return position of larger element
(3) if $A[\lfloor n / 2\rfloor]$ is a peak then return $\lfloor n / 2\rfloor$
(4) Otherwise, if $A[\lfloor n / 2\rfloor-1] \geq A[\lfloor n / 2\rfloor]$ then return $\operatorname{FAST}-\mathrm{PEAK}-\operatorname{Finding}(A[0,\lfloor n / 2\rfloor-1])$
(5) else

$$
\begin{aligned}
& \text { return }\lfloor n / 2\rfloor+1+ \\
& \text { FAST-PEAK-FindING }(A[\lfloor n / 2\rfloor+1, n-1])
\end{aligned}
$$

Why is step 4 correct? (step 5 is similar)

Peak Finding: Correctness

Why is the Algorithm correct?!

Steps 1,2,3 are clearly correct
(1) if A is of length 1 then return 0
(2) if A is of length 2 then compare $A[0]$ and $A[1]$ and return position of larger element
(3) if $A[\lfloor n / 2\rfloor]$ is a peak then return $\lfloor n / 2\rfloor$
(4) Otherwise, if $A[\lfloor n / 2\rfloor-1] \geq A[\lfloor n / 2\rfloor]$ then return $\operatorname{FAST}-\mathrm{PEAK}-\operatorname{Finding}(A[0,\lfloor n / 2\rfloor-1])$
(5) else

$$
\begin{aligned}
& \text { return }\lfloor n / 2\rfloor+1+ \\
& \text { FAST-PEAK-FindING }(A[\lfloor n / 2\rfloor+1, n-1])
\end{aligned}
$$

Why is step 4 correct? (step 5 is similar)

- Need to prove: peak in $A[0,\lfloor n / 2\rfloor-1]$ is a peak in A

Peak Finding: Correctness

Why is the Algorithm correct?!

Steps 1,2,3 are clearly correct
(1) if A is of length 1 then return 0
(2) if A is of length 2 then compare $A[0]$ and $A[1]$ and return position of larger element
(3) if $A[\lfloor n / 2\rfloor]$ is a peak then return $\lfloor n / 2\rfloor$
(4) Otherwise, if $A[\lfloor n / 2\rfloor-1] \geq A[\lfloor n / 2\rfloor]$ then return $\operatorname{FAST}-\mathrm{PEAK}-\operatorname{Finding}(A[0,\lfloor n / 2\rfloor-1])$
(5) else

$$
\begin{aligned}
& \text { return }\lfloor n / 2\rfloor+1+ \\
& \text { FAST-PEAK-FINDING }(A[\lfloor n / 2\rfloor+1, n-1])
\end{aligned}
$$

Why is step 4 correct? (step 5 is similar)

- Need to prove: peak in $A[0,\lfloor n / 2\rfloor-1]$ is a peak in A
- This is trivially true for every position $i<\lfloor n / 2\rfloor-1$, since both cells adjacent to $A[i]$ are also contained in $A[0,\lfloor n / 2\rfloor-1]$
- Critical case: $\lfloor n / 2\rfloor-1$ is a peak in $A[0,\lfloor n / 2\rfloor-1]$

Peak Finding: Correctness (2)

Why is the Algorithm correct?!

Steps 1,2,3 are clearly correct
(1) if A is of length 1 then return 0
(2) if A is of length 2 then compare $A[0]$ and $A[1]$ and return position of larger element
(3) if $A[\lfloor n / 2\rfloor]$ is a peak then return $\lfloor n / 2\rfloor$
(4) Otherwise, if $A[\lfloor n / 2\rfloor-1] \geq A[\lfloor n / 2\rfloor]$ then return $\operatorname{FAST}-\operatorname{PEAK}-\operatorname{Finding}(A[0,\lfloor n / 2\rfloor-1])$
(5) else
return $\lfloor n / 2\rfloor+1+$
Fast-Peak-Finding $(A[\lfloor n / 2\rfloor+1, n-1])$

- Critical case: $\lfloor n / 2\rfloor-1$ is a peak in $A[0,\lfloor n / 2\rfloor-1]$
- Need to guarantee that $A[\lfloor n / 2\rfloor] \leq A[\lfloor n / 2\rfloor-1]$ since otherwise $\lfloor n / 2\rfloor-1$ would not be a peak
- This, however, follows from the condition in step 4 !

Peak Finding: Runtime Comparison

$4(n-1)$ versus $5 \log n$

Peak Finding: Runtime Comparison

$4(n-1)$ versus $5 \log n$

Peak Finding: Runtime Comparison

$4(n-1)$ versus $5 \log n$

Peak Finding: Runtime Comparison

$4(n-1)$ versus $5 \log n$

Conclusion: $5 \log n$ is so much better than $4(n-1)$!

