Big-O Notation COMS10017 - Algorithms 1

Dr Christian Konrad



**Definition:** O-notation ("Big O") Let g(n) be a function. Then O(g(n)) is the set of functions:  $O(g(n)) = \{f(n) : \text{There exist positive constants } c \text{ and } n_0$ such that  $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$ 

**Meaning:**  $f(n) \in O(g(n))$ : "g grows asymptotically at least as fast as f up to constants"

## O-Notation: Example



## O-Notation: Example



### Recall:

 $O(g(n)) = \{f(n) : \text{ There exist positive constants } c \text{ and } n_0$ such that  $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$ 

### Exercises:

• 
$$100n \stackrel{?}{\in} O(n)$$



### Recall:

 $O(g(n)) = \{f(n) : \text{There exist positive constants } c \text{ and } n_0$ such that  $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$ 

### Exercises:

• 
$$100n \stackrel{?}{\in} O(n)$$
 Yes, chose  $c = 100, n_0 = 1$ 



### Recall:

 $O(g(n)) = \{f(n) : \text{ There exist positive constants } c \text{ and } n_0$ such that  $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$ 

### Exercises:

•  $100n \stackrel{?}{\in} O(n)$  Yes, chose  $c = 100, n_0 = 1$ •  $0.5n \stackrel{?}{\in} O(n/\log n)$ 



### Recall:

 $O(g(n)) = \{f(n) : \text{ There exist positive constants } c \text{ and } n_0$ such that  $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$ 

### Exercises:

•  $100n \stackrel{?}{\in} O(n)$  Yes, chose  $c = 100, n_0 = 1$ •  $0.5n \stackrel{?}{\in} O(n/\log n)$  No:



### Recall:

 $O(g(n)) = \{f(n) : \text{ There exist positive constants } c \text{ and } n_0$ such that  $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$ 

### Exercises:

100n <sup>?</sup>∈ O(n) Yes, chose c = 100, n<sub>0</sub> = 1
0.5n <sup>?</sup>∈ O(n/log n) No: Suppose that such constants c and n<sub>0</sub> exist. Then, for every n > n<sub>0</sub>:

### Recall:

 $O(g(n)) = \{f(n) : \text{ There exist positive constants } c \text{ and } n_0$ such that  $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$ 

### Exercises:

100n <sup>?</sup>∈ O(n) Yes, chose c = 100, n<sub>0</sub> = 1
0.5n <sup>?</sup>∈ O(n/log n) No: Suppose that such constants c and n<sub>0</sub> exist. Then, for every n ≥ n<sub>0</sub>:

$$0.5n \leq cn/\log n$$

### Recall:

 $O(g(n)) = \{f(n) : \text{ There exist positive constants } c \text{ and } n_0$ such that  $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$ 

### Exercises:

100n <sup>?</sup>∈ O(n) Yes, chose c = 100, n<sub>0</sub> = 1
0.5n <sup>?</sup>∈ O(n/log n) No: Suppose that such constants c and n<sub>0</sub> exist. Then, for every n ≥ n<sub>0</sub>:

$$\begin{array}{rcl} 0.5n & \leq & cn/\log n \\ \log n & \leq & 2c \end{array}$$

## Recall:

 $O(g(n)) = \{f(n) : \text{ There exist positive constants } c \text{ and } n_0$ such that  $0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}$ 

### Exercises:

100n <sup>?</sup>∈ O(n) Yes, chose c = 100, n<sub>0</sub> = 1
0.5n <sup>?</sup>∈ O(n/log n) No: Suppose that such constants c and n<sub>0</sub> exist. Then, for every n ≥ n<sub>0</sub>:

$$\begin{array}{rcl} 0.5n &\leq & cn/\log n \\ \log n &\leq & 2c \\ n &\leq & 2^{2c} \ , {\rm a \ contradiction}, \end{array}$$

since this does not hold for every  $n > 2^{2c}$ .







Find constants  $c, n_0$  as in the statement of the definition of Big-O, i.e., such that  $f(n) \leq c \cdot g(n)$ , for all  $n \geq n_0$ 



Find constants  $c, n_0$  as in the statement of the definition of Big-O, i.e., such that  $f(n) \le c \cdot g(n)$ , for all  $n \ge n_0$ 

Proving that  $f \notin O(g)$ :



Find constants  $c, n_0$  as in the statement of the definition of Big-O, i.e., such that  $f(n) \le c \cdot g(n)$ , for all  $n \ge n_0$ 

### Proving that $f \notin O(g)$ :

Proof by contradiction: Assume that constants c,  $n_0$  exist as in the statement of the definition of Big-O and derive a contradiction

#### Lemma (Sum of Two Functions)

Suppose that  $f,g \in O(h)$ . Then:  $f + g \in O(h)$ .



#### Lemma (Sum of Two Functions)

Suppose that  $f,g \in O(h)$ . Then:  $f + g \in O(h)$ .

#### Proof.

**To Do:** We need to find constants  $C, N_0$  such that

 $f(n) + g(n) \le C \cdot h(n), \text{ for every } n \ge N_0 \ .$ 

#### Lemma (Sum of Two Functions)

Suppose that  $f,g \in O(h)$ . Then:  $f + g \in O(h)$ .

#### Proof.

**To Do:** We need to find constants  $C, N_0$  such that

$$f(n)+g(n)\leq C\cdot h(n), ext{ for every } n\geq N_0$$
 .

Since  $f \in O(h)$  there exist constants  $c, n_0$  such that  $f(n) \leq c \cdot h(n)$ , for every  $n \geq n_0$ .

#### Lemma (Sum of Two Functions)

Suppose that  $f,g \in O(h)$ . Then:  $f + g \in O(h)$ .

#### Proof.

**To Do:** We need to find constants  $C, N_0$  such that

$$f(n)+g(n)\leq C\cdot h(n), ext{ for every } n\geq N_0$$
 .

Since  $f \in O(h)$  there exist constants  $c, n_0$  such that  $f(n) \le c \cdot h(n)$ , for every  $n \ge n_0$ . Since  $g \in O(h)$  there exist constants  $c', n'_0$  such that  $g(n) \le c' h(n)$ , for every  $n \ge n'_0$ .

#### Lemma (Sum of Two Functions)

Suppose that  $f,g \in O(h)$ . Then:  $f + g \in O(h)$ .

#### Proof.

**To Do:** We need to find constants  $C, N_0$  such that

$$f(n)+g(n)\leq C\cdot h(n), ext{ for every } n\geq N_0$$
 .

Since  $f \in O(h)$  there exist constants  $c, n_0$  such that  $f(n) \le c \cdot h(n)$ , for every  $n \ge n_0$ . Since  $g \in O(h)$  there exist constants  $c', n'_0$  such that  $g(n) \le c'h(n)$ , for every  $n \ge n'_0$ . Let C = c + c' and let  $N_0 = \max\{n_0, n'_0\}$ . Then:

#### Lemma (Sum of Two Functions)

Suppose that  $f,g \in O(h)$ . Then:  $f + g \in O(h)$ .

#### Proof.

To Do: We need to find constants  $C, N_0$  such that

$$f(n)+g(n)\leq C\cdot h(n), ext{ for every } n\geq N_0$$
 .

Since  $f \in O(h)$  there exist constants  $c, n_0$  such that  $f(n) \leq c \cdot h(n)$ , for every  $n \geq n_0$ . Since  $g \in O(h)$  there exist constants  $c', n'_0$  such that  $g(n) \leq c' h(n)$ , for every  $n \geq n'_0$ . Let C = c + c' and let  $N_0 = \max\{n_0, n'_0\}$ . Then: f(n) + g(n)

#### Lemma (Sum of Two Functions)

Suppose that  $f,g \in O(h)$ . Then:  $f + g \in O(h)$ .

#### Proof.

To Do: We need to find constants  $C, N_0$  such that

$$f(n)+g(n)\leq C\cdot h(n), ext{ for every } n\geq N_0$$
 .

Since  $f \in O(h)$  there exist constants  $c, n_0$  such that  $f(n) \leq c \cdot h(n)$ , for every  $n \geq n_0$ . Since  $g \in O(h)$  there exist constants  $c', n'_0$  such that  $g(n) \leq c' h(n)$ , for every  $n \geq n'_0$ . Let C = c + c' and let  $N_0 = \max\{n_0, n'_0\}$ . Then:  $f(n) + g(n) \leq ch(n) + c'h(n)$ 

#### Lemma (Sum of Two Functions)

Suppose that  $f,g \in O(h)$ . Then:  $f + g \in O(h)$ .

#### Proof.

To Do: We need to find constants  $C, N_0$  such that

$$f(n)+g(n)\leq C\cdot h(n), ext{ for every } n\geq N_0$$
 .

Since  $f \in O(h)$  there exist constants  $c, n_0$  such that  $f(n) \leq c \cdot h(n)$ , for every  $n \geq n_0$ . Since  $g \in O(h)$  there exist constants  $c', n'_0$  such that  $g(n) \leq c'h(n)$ , for every  $n \geq n'_0$ . Let C = c + c' and let  $N_0 = \max\{n_0, n'_0\}$ . Then:  $f(n) + g(n) \leq ch(n) + c'h(n) = C \cdot h(n)$  for every  $n \geq N_0$ .

## Further Properties

#### Lemma (Polynomials)

Let  $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$ , for some integer k that is independent of n. Then:  $f(n) \in O(n^k)$ .



## Further Properties

#### Lemma (Polynomials)

Let  $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$ , for some integer k that is independent of n. Then:  $f(n) \in O(n^k)$ .

**Proof:** Apply statement on last slide k = O(1) times



Let  $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$ , for some integer k that is independent of n. Then:  $f(n) \in O(n^k)$ .

**Proof:** Apply statement on last slide k = O(1) times



Let  $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$ , for some integer k that is independent of n. Then:  $f(n) \in O(n^k)$ .

**Proof:** Apply statement on last slide k = O(1) times

$$n^2 = n + n + \underbrace{n + \dots n}_{n-2 \text{ times}}$$



Let  $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$ , for some integer k that is independent of n. Then:  $f(n) \in O(n^k)$ .

**Proof:** Apply statement on last slide k = O(1) times

$$n^2 = n + n + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}}$$



Let  $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$ , for some integer k that is independent of n. Then:  $f(n) \in O(n^k)$ .

**Proof:** Apply statement on last slide k = O(1) times

$$n^{2} = n + n + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}}$$
$$= O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}}$$

Let  $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$ , for some integer k that is independent of n. Then:  $f(n) \in O(n^k)$ .

**Proof:** Apply statement on last slide k = O(1) times

$$n^{2} = n + n + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}}$$
$$= O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} =$$

Let  $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$ , for some integer k that is independent of n. Then:  $f(n) \in O(n^k)$ .

**Proof:** Apply statement on last slide k = O(1) times

$$n^{2} = n + n + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}}$$
$$= O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}}$$

Let  $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$ , for some integer k that is independent of n. Then:  $f(n) \in O(n^k)$ .

**Proof:** Apply statement on last slide k = O(1) times

$$n^{2} = n + n + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}}$$
$$= O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n)$$

Let  $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$ , for some integer k that is independent of n. Then:  $f(n) \in O(n^k)$ .

**Proof:** Apply statement on last slide k = O(1) times

**Attention:** Wrong proof of  $n^2 \in O(n)$ : (this is clearly wrong)

$$n^{2} = n + n + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}}$$
$$= O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n)$$

Application of statement on last slide n times! (only allowed to apply statement O(1) times!)

### Tool for the Analysis of Algorithms

• We will express the runtime of algorithms using O-notation

# Runtime of Algorithms

### Tool for the Analysis of Algorithms

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms
- **Important:** Find the slowest growing function f such that our runtime is in O(f) (most algorithms have a runtime of  $O(2^n)$ )

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms
- **Important:** Find the slowest growing function f such that our runtime is in O(f) (most algorithms have a runtime of  $O(2^n)$ )

#### Important Properties for the Analysis of Algorithms

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms
- **Important:** Find the slowest growing function f such that our runtime is in O(f) (most algorithms have a runtime of  $O(2^n)$ )

### Important Properties for the Analysis of Algorithms

• Composition of instructions:

$$f \in O(h_1), g \in O(h_2)$$
 then  $f + g \in O(h_1 + h_2)$ 

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms
- **Important:** Find the slowest growing function f such that our runtime is in O(f) (most algorithms have a runtime of  $O(2^n)$ )

### Important Properties for the Analysis of Algorithms

• Composition of instructions:

$$f \in O(h_1), g \in O(h_2)$$
 then  $f + g \in O(h_1 + h_2)$ 

• Loops: (repetition of instructions)

$$f \in O(h_1), g \in O(h_2)$$
 then  $f \cdot g \in O(h_1 \cdot h_2)$ 

• Constant time: O(1)



• Constant time: O(1) (individual operations)

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g.,  $O(\log \log n)$

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g.,  $O(\log \log n)$
- Logarithmic time:  $O(\log n)$

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g.,  $O(\log \log n)$
- Logarithmic time:  $O(\log n)$  (FAST-PEAK-FINDING)

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g.,  $O(\log \log n)$
- Logarithmic time:  $O(\log n)$  (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g.,  $O(\log^2 n), O(\log^{10} n), \ldots$

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g.,  $O(\log \log n)$
- Logarithmic time:  $O(\log n)$  (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g.,  $O(\log^2 n), O(\log^{10} n), \ldots$
- Linear time: O(n)

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g.,  $O(\log \log n)$
- Logarithmic time:  $O(\log n)$  (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g.,  $O(\log^2 n), O(\log^{10} n), \ldots$
- Linear time: O(n) (e.g., time to read the input)

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g.,  $O(\log \log n)$
- Logarithmic time:  $O(\log n)$  (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g.,  $O(\log^2 n), O(\log^{10} n), \ldots$
- Linear time: O(n) (e.g., time to read the input)
- Quadratic time:  $O(n^2)$

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g.,  $O(\log \log n)$
- Logarithmic time:  $O(\log n)$  (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g.,  $O(\log^2 n), O(\log^{10} n), \ldots$
- Linear time: O(n) (e.g., time to read the input)
- Quadratic time:  $O(n^2)$  (potentially slow on big inputs)

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g.,  $O(\log \log n)$
- Logarithmic time:  $O(\log n)$  (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g.,  $O(\log^2 n), O(\log^{10} n), \ldots$
- Linear time: O(n) (e.g., time to read the input)
- Quadratic time:  $O(n^2)$  (potentially slow on big inputs)
- Polynomial time:  $O(n^c)$

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g.,  $O(\log \log n)$
- Logarithmic time:  $O(\log n)$  (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g.,  $O(\log^2 n), O(\log^{10} n), \ldots$
- Linear time: O(n) (e.g., time to read the input)
- Quadratic time:  $O(n^2)$  (potentially slow on big inputs)
- Polynomial time:  $O(n^c)$  (used to be considered efficient)

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g.,  $O(\log \log n)$
- Logarithmic time:  $O(\log n)$  (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g.,  $O(\log^2 n), O(\log^{10} n), \ldots$
- Linear time: O(n) (e.g., time to read the input)
- Quadratic time:  $O(n^2)$  (potentially slow on big inputs)
- Polynomial time:  $O(n^c)$  (used to be considered efficient)
- Exponential time:  $O(2^n)$

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g.,  $O(\log \log n)$
- Logarithmic time:  $O(\log n)$  (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g.,  $O(\log^2 n), O(\log^{10} n), \ldots$
- Linear time: O(n) (e.g., time to read the input)
- Quadratic time:  $O(n^2)$  (potentially slow on big inputs)
- Polynomial time:  $O(n^c)$  (used to be considered efficient)
- Exponential time:  $O(2^n)$  (works only on very small inputs)

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g.,  $O(\log \log n)$
- Logarithmic time:  $O(\log n)$  (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g.,  $O(\log^2 n), O(\log^{10} n), \ldots$
- Linear time: O(n) (e.g., time to read the input)
- Quadratic time:  $O(n^2)$  (potentially slow on big inputs)
- Polynomial time:  $O(n^c)$  (used to be considered efficient)
- Exponential time:  $O(2^n)$  (works only on very small inputs)
- Super-exponential time: e.g.  $O(2^{2^n})$

- Constant time: O(1) (individual operations)
- Sub-logarithmic time: e.g.,  $O(\log \log n)$
- Logarithmic time:  $O(\log n)$  (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g.,  $O(\log^2 n), O(\log^{10} n), \ldots$
- Linear time: O(n) (e.g., time to read the input)
- Quadratic time:  $O(n^2)$  (potentially slow on big inputs)
- Polynomial time:  $O(n^c)$  (used to be considered efficient)
- Exponential time:  $O(2^n)$  (works only on very small inputs)
- Super-exponential time: e.g.  $O(2^{2^n})$  (big trouble...)