
Big-O Notation
COMS10017 - Algorithms 1

Dr Christian Konrad

Dr Christian Konrad Big-O Notation 1 / 9

Big O Notation

Definition: O-notation (“Big O”)

Let g(n) be a function. Then O(g(n)) is the set of functions:

O(g(n)) = {f (n) : There exist positive constants c and n0

such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Meaning: f (n) ∈ O(g(n)) : “g grows asymptotically at least as
fast as f up to constants”

Dr Christian Konrad Big-O Notation 2 / 9

O-Notation: Example

Example: f (n) = 1
2n

2 − 10n and g(n) = 2n2

-5000

 0

 5000

 10000

 15000

 20000

 10 20 30 40 50 60 70 80 90 100

0.5n2 - 10n
2n2

Then: g(n) ∈ O(f (n)), since 6f (n) ≥ g(n), for every n ≥ n0 = 60

Dr Christian Konrad Big-O Notation 3 / 9

O-Notation: Example

Example: f (n) = 1
2n

2 − 10n and g(n) = 2n2

-5000

 0

 5000

 10000

 15000

 20000

 25000

 10 20 30 40 50 60 70 80 90 100

0.5n2 - 10n
2n2

6(0.5n2 - 10n)

Then: g(n) ∈ O(f (n)), since 6f (n) ≥ g(n), for every n ≥ n0 = 60

Dr Christian Konrad Big-O Notation 3 / 9

More Examples/Exercises

Recall:

O(g(n)) = {f (n) : There exist positive constants c and n0

such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Exercises:

100n
?
∈ O(n)

Yes, chose c = 100, n0 = 1

0.5n
?
∈ O(n/ log n) No: Suppose that such constants c and n0

exist. Then, for every n ≥ n0 :

0.5n ≤ cn/ log n

log n ≤ 2c

n ≤ 22c , a contradiction,

since this does not hold for every n > 22c .

Dr Christian Konrad Big-O Notation 4 / 9

More Examples/Exercises

Recall:

O(g(n)) = {f (n) : There exist positive constants c and n0

such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Exercises:

100n
?
∈ O(n) Yes, chose c = 100, n0 = 1

0.5n
?
∈ O(n/ log n) No: Suppose that such constants c and n0

exist. Then, for every n ≥ n0 :

0.5n ≤ cn/ log n

log n ≤ 2c

n ≤ 22c , a contradiction,

since this does not hold for every n > 22c .

Dr Christian Konrad Big-O Notation 4 / 9

More Examples/Exercises

Recall:

O(g(n)) = {f (n) : There exist positive constants c and n0

such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Exercises:

100n
?
∈ O(n) Yes, chose c = 100, n0 = 1

0.5n
?
∈ O(n/ log n)

No: Suppose that such constants c and n0
exist. Then, for every n ≥ n0 :

0.5n ≤ cn/ log n

log n ≤ 2c

n ≤ 22c , a contradiction,

since this does not hold for every n > 22c .

Dr Christian Konrad Big-O Notation 4 / 9

More Examples/Exercises

Recall:

O(g(n)) = {f (n) : There exist positive constants c and n0

such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Exercises:

100n
?
∈ O(n) Yes, chose c = 100, n0 = 1

0.5n
?
∈ O(n/ log n) No:

Suppose that such constants c and n0
exist. Then, for every n ≥ n0 :

0.5n ≤ cn/ log n

log n ≤ 2c

n ≤ 22c , a contradiction,

since this does not hold for every n > 22c .

Dr Christian Konrad Big-O Notation 4 / 9

More Examples/Exercises

Recall:

O(g(n)) = {f (n) : There exist positive constants c and n0

such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Exercises:

100n
?
∈ O(n) Yes, chose c = 100, n0 = 1

0.5n
?
∈ O(n/ log n) No: Suppose that such constants c and n0

exist. Then, for every n ≥ n0 :

0.5n ≤ cn/ log n

log n ≤ 2c

n ≤ 22c , a contradiction,

since this does not hold for every n > 22c .

Dr Christian Konrad Big-O Notation 4 / 9

More Examples/Exercises

Recall:

O(g(n)) = {f (n) : There exist positive constants c and n0

such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Exercises:

100n
?
∈ O(n) Yes, chose c = 100, n0 = 1

0.5n
?
∈ O(n/ log n) No: Suppose that such constants c and n0

exist. Then, for every n ≥ n0 :

0.5n ≤ cn/ log n

log n ≤ 2c

n ≤ 22c , a contradiction,

since this does not hold for every n > 22c .

Dr Christian Konrad Big-O Notation 4 / 9

More Examples/Exercises

Recall:

O(g(n)) = {f (n) : There exist positive constants c and n0

such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Exercises:

100n
?
∈ O(n) Yes, chose c = 100, n0 = 1

0.5n
?
∈ O(n/ log n) No: Suppose that such constants c and n0

exist. Then, for every n ≥ n0 :

0.5n ≤ cn/ log n

log n ≤ 2c

n ≤ 22c , a contradiction,

since this does not hold for every n > 22c .

Dr Christian Konrad Big-O Notation 4 / 9

More Examples/Exercises

Recall:

O(g(n)) = {f (n) : There exist positive constants c and n0

such that 0 ≤ f (n) ≤ cg(n) for all n ≥ n0}

Exercises:

100n
?
∈ O(n) Yes, chose c = 100, n0 = 1

0.5n
?
∈ O(n/ log n) No: Suppose that such constants c and n0

exist. Then, for every n ≥ n0 :

0.5n ≤ cn/ log n

log n ≤ 2c

n ≤ 22c , a contradiction,

since this does not hold for every n > 22c .

Dr Christian Konrad Big-O Notation 4 / 9

Recipes

Proving that f ∈ O(g):

Find constants c , n0 as in the statement of the definition of Big-O,
i.e., such that f (n) ≤ c · g(n), for all n ≥ n0

Proving that f /∈ O(g):

Proof by contradiction: Assume that constants c , n0 exist as in the
statement of the definition of Big-O and derive a contradiction

Dr Christian Konrad Big-O Notation 5 / 9

Recipes

Proving that f ∈ O(g):

Find constants c , n0 as in the statement of the definition of Big-O,
i.e., such that f (n) ≤ c · g(n), for all n ≥ n0

Proving that f /∈ O(g):

Proof by contradiction: Assume that constants c , n0 exist as in the
statement of the definition of Big-O and derive a contradiction

Dr Christian Konrad Big-O Notation 5 / 9

Recipes

Proving that f ∈ O(g):

Find constants c , n0 as in the statement of the definition of Big-O,
i.e., such that f (n) ≤ c · g(n), for all n ≥ n0

Proving that f /∈ O(g):

Proof by contradiction: Assume that constants c , n0 exist as in the
statement of the definition of Big-O and derive a contradiction

Dr Christian Konrad Big-O Notation 5 / 9

Recipes

Proving that f ∈ O(g):

Find constants c , n0 as in the statement of the definition of Big-O,
i.e., such that f (n) ≤ c · g(n), for all n ≥ n0

Proving that f /∈ O(g):

Proof by contradiction: Assume that constants c , n0 exist as in the
statement of the definition of Big-O and derive a contradiction

Dr Christian Konrad Big-O Notation 5 / 9

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that f , g ∈ O(h). Then: f + g ∈ O(h) .

Proof.
To Do: We need to find constants C ,N0 such that

f (n) + g(n) ≤ C · h(n), for every n ≥ N0 .

Since f ∈ O(h) there exist constants c , n0 such that

f (n) ≤ c · h(n), for every n ≥ n0 .

Since g ∈ O(h) there exist constants c ′, n′0 such that

g(n) ≤ c ′h(n), for every n ≥ n′0 .

Let C = c + c ′ and let N0 = max{n0, n′0}. Then:
f (n) + g(n) ≤ ch(n) + c ′h(n) = C · h(n) for every n ≥ N0 .

Dr Christian Konrad Big-O Notation 6 / 9

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that f , g ∈ O(h). Then: f + g ∈ O(h) .

Proof.
To Do: We need to find constants C ,N0 such that

f (n) + g(n) ≤ C · h(n), for every n ≥ N0 .

Since f ∈ O(h) there exist constants c , n0 such that

f (n) ≤ c · h(n), for every n ≥ n0 .

Since g ∈ O(h) there exist constants c ′, n′0 such that

g(n) ≤ c ′h(n), for every n ≥ n′0 .

Let C = c + c ′ and let N0 = max{n0, n′0}. Then:
f (n) + g(n) ≤ ch(n) + c ′h(n) = C · h(n) for every n ≥ N0 .

Dr Christian Konrad Big-O Notation 6 / 9

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that f , g ∈ O(h). Then: f + g ∈ O(h) .

Proof.
To Do: We need to find constants C ,N0 such that

f (n) + g(n) ≤ C · h(n), for every n ≥ N0 .

Since f ∈ O(h) there exist constants c , n0 such that

f (n) ≤ c · h(n), for every n ≥ n0 .

Since g ∈ O(h) there exist constants c ′, n′0 such that

g(n) ≤ c ′h(n), for every n ≥ n′0 .

Let C = c + c ′ and let N0 = max{n0, n′0}. Then:
f (n) + g(n) ≤ ch(n) + c ′h(n) = C · h(n) for every n ≥ N0 .

Dr Christian Konrad Big-O Notation 6 / 9

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that f , g ∈ O(h). Then: f + g ∈ O(h) .

Proof.
To Do: We need to find constants C ,N0 such that

f (n) + g(n) ≤ C · h(n), for every n ≥ N0 .

Since f ∈ O(h) there exist constants c , n0 such that

f (n) ≤ c · h(n), for every n ≥ n0 .

Since g ∈ O(h) there exist constants c ′, n′0 such that

g(n) ≤ c ′h(n), for every n ≥ n′0 .

Let C = c + c ′ and let N0 = max{n0, n′0}. Then:
f (n) + g(n) ≤ ch(n) + c ′h(n) = C · h(n) for every n ≥ N0 .

Dr Christian Konrad Big-O Notation 6 / 9

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that f , g ∈ O(h). Then: f + g ∈ O(h) .

Proof.
To Do: We need to find constants C ,N0 such that

f (n) + g(n) ≤ C · h(n), for every n ≥ N0 .

Since f ∈ O(h) there exist constants c , n0 such that

f (n) ≤ c · h(n), for every n ≥ n0 .

Since g ∈ O(h) there exist constants c ′, n′0 such that

g(n) ≤ c ′h(n), for every n ≥ n′0 .

Let C = c + c ′ and let N0 = max{n0, n′0}. Then:

f (n) + g(n) ≤ ch(n) + c ′h(n) = C · h(n) for every n ≥ N0 .

Dr Christian Konrad Big-O Notation 6 / 9

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that f , g ∈ O(h). Then: f + g ∈ O(h) .

Proof.
To Do: We need to find constants C ,N0 such that

f (n) + g(n) ≤ C · h(n), for every n ≥ N0 .

Since f ∈ O(h) there exist constants c , n0 such that

f (n) ≤ c · h(n), for every n ≥ n0 .

Since g ∈ O(h) there exist constants c ′, n′0 such that

g(n) ≤ c ′h(n), for every n ≥ n′0 .

Let C = c + c ′ and let N0 = max{n0, n′0}. Then:
f (n) + g(n)

≤ ch(n) + c ′h(n) = C · h(n) for every n ≥ N0 .

Dr Christian Konrad Big-O Notation 6 / 9

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that f , g ∈ O(h). Then: f + g ∈ O(h) .

Proof.
To Do: We need to find constants C ,N0 such that

f (n) + g(n) ≤ C · h(n), for every n ≥ N0 .

Since f ∈ O(h) there exist constants c , n0 such that

f (n) ≤ c · h(n), for every n ≥ n0 .

Since g ∈ O(h) there exist constants c ′, n′0 such that

g(n) ≤ c ′h(n), for every n ≥ n′0 .

Let C = c + c ′ and let N0 = max{n0, n′0}. Then:
f (n) + g(n) ≤ ch(n) + c ′h(n)

= C · h(n) for every n ≥ N0 .

Dr Christian Konrad Big-O Notation 6 / 9

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that f , g ∈ O(h). Then: f + g ∈ O(h) .

Proof.
To Do: We need to find constants C ,N0 such that

f (n) + g(n) ≤ C · h(n), for every n ≥ N0 .

Since f ∈ O(h) there exist constants c , n0 such that

f (n) ≤ c · h(n), for every n ≥ n0 .

Since g ∈ O(h) there exist constants c ′, n′0 such that

g(n) ≤ c ′h(n), for every n ≥ n′0 .

Let C = c + c ′ and let N0 = max{n0, n′0}. Then:
f (n) + g(n) ≤ ch(n) + c ′h(n) = C · h(n) for every n ≥ N0 .

Dr Christian Konrad Big-O Notation 6 / 9

Further Properties

Lemma (Polynomials)

Let f (n) = c0 + c1n+ c2n
2 + c3n

3 + · · ·+ ckn
k , for some integer k

that is independent of n. Then: f (n) ∈ O(nk) .

Proof: Apply statement on last slide k = O(1) times

Attention: Wrong proof of n2 ∈ O(n): (this is clearly wrong)

n2 = n + n + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

=

= O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

= · · · = O(n) .

Application of statement on last slide n times! (only allowed to
apply statement O(1) times!)

Dr Christian Konrad Big-O Notation 7 / 9

Further Properties

Lemma (Polynomials)

Let f (n) = c0 + c1n+ c2n
2 + c3n

3 + · · ·+ ckn
k , for some integer k

that is independent of n. Then: f (n) ∈ O(nk) .

Proof: Apply statement on last slide k = O(1) times

Attention: Wrong proof of n2 ∈ O(n): (this is clearly wrong)

n2 = n + n + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

=

= O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

= · · · = O(n) .

Application of statement on last slide n times! (only allowed to
apply statement O(1) times!)

Dr Christian Konrad Big-O Notation 7 / 9

Further Properties

Lemma (Polynomials)

Let f (n) = c0 + c1n+ c2n
2 + c3n

3 + · · ·+ ckn
k , for some integer k

that is independent of n. Then: f (n) ∈ O(nk) .

Proof: Apply statement on last slide k = O(1) times

Attention: Wrong proof of n2 ∈ O(n): (this is clearly wrong)

n2 = n + n + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

=

= O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

= · · · = O(n) .

Application of statement on last slide n times! (only allowed to
apply statement O(1) times!)

Dr Christian Konrad Big-O Notation 7 / 9

Further Properties

Lemma (Polynomials)

Let f (n) = c0 + c1n+ c2n
2 + c3n

3 + · · ·+ ckn
k , for some integer k

that is independent of n. Then: f (n) ∈ O(nk) .

Proof: Apply statement on last slide k = O(1) times

Attention: Wrong proof of n2 ∈ O(n): (this is clearly wrong)

n2 = n + n + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

=

= O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

= · · · = O(n) .

Application of statement on last slide n times! (only allowed to
apply statement O(1) times!)

Dr Christian Konrad Big-O Notation 7 / 9

Further Properties

Lemma (Polynomials)

Let f (n) = c0 + c1n+ c2n
2 + c3n

3 + · · ·+ ckn
k , for some integer k

that is independent of n. Then: f (n) ∈ O(nk) .

Proof: Apply statement on last slide k = O(1) times

Attention: Wrong proof of n2 ∈ O(n): (this is clearly wrong)

n2 = n + n + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

=

= O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

= · · · = O(n) .

Application of statement on last slide n times! (only allowed to
apply statement O(1) times!)

Dr Christian Konrad Big-O Notation 7 / 9

Further Properties

Lemma (Polynomials)

Let f (n) = c0 + c1n+ c2n
2 + c3n

3 + · · ·+ ckn
k , for some integer k

that is independent of n. Then: f (n) ∈ O(nk) .

Proof: Apply statement on last slide k = O(1) times

Attention: Wrong proof of n2 ∈ O(n): (this is clearly wrong)

n2 = n + n + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

=

= O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

= · · · = O(n) .

Application of statement on last slide n times! (only allowed to
apply statement O(1) times!)

Dr Christian Konrad Big-O Notation 7 / 9

Further Properties

Lemma (Polynomials)

Let f (n) = c0 + c1n+ c2n
2 + c3n

3 + · · ·+ ckn
k , for some integer k

that is independent of n. Then: f (n) ∈ O(nk) .

Proof: Apply statement on last slide k = O(1) times

Attention: Wrong proof of n2 ∈ O(n): (this is clearly wrong)

n2 = n + n + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

=

= O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

= · · · = O(n) .

Application of statement on last slide n times! (only allowed to
apply statement O(1) times!)

Dr Christian Konrad Big-O Notation 7 / 9

Further Properties

Lemma (Polynomials)

Let f (n) = c0 + c1n+ c2n
2 + c3n

3 + · · ·+ ckn
k , for some integer k

that is independent of n. Then: f (n) ∈ O(nk) .

Proof: Apply statement on last slide k = O(1) times

Attention: Wrong proof of n2 ∈ O(n): (this is clearly wrong)

n2 = n + n + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

=

= O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

= · · · = O(n) .

Application of statement on last slide n times! (only allowed to
apply statement O(1) times!)

Dr Christian Konrad Big-O Notation 7 / 9

Further Properties

Lemma (Polynomials)

Let f (n) = c0 + c1n+ c2n
2 + c3n

3 + · · ·+ ckn
k , for some integer k

that is independent of n. Then: f (n) ∈ O(nk) .

Proof: Apply statement on last slide k = O(1) times

Attention: Wrong proof of n2 ∈ O(n): (this is clearly wrong)

n2 = n + n + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

=

= O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

= · · · = O(n) .

Application of statement on last slide n times! (only allowed to
apply statement O(1) times!)

Dr Christian Konrad Big-O Notation 7 / 9

Further Properties

Lemma (Polynomials)

Let f (n) = c0 + c1n+ c2n
2 + c3n

3 + · · ·+ ckn
k , for some integer k

that is independent of n. Then: f (n) ∈ O(nk) .

Proof: Apply statement on last slide k = O(1) times

Attention: Wrong proof of n2 ∈ O(n): (this is clearly wrong)

n2 = n + n + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + n + . . . n︸ ︷︷ ︸
n−2 times

= O(n) + O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

=

= O(n) + n + . . . n︸ ︷︷ ︸
n−3 times

= · · · = O(n) .

Application of statement on last slide n times! (only allowed to
apply statement O(1) times!)

Dr Christian Konrad Big-O Notation 7 / 9

Runtime of Algorithms

Tool for the Analysis of Algorithms

We will express the runtime of algorithms using O-notation

This allows us to compare the runtimes of algorithms

Important: Find the slowest growing function f such that our
runtime is in O(f) (most algorithms have a runtime of O(2n))

Important Properties for the Analysis of Algorithms

Composition of instructions:

f ∈ O(h1), g ∈ O(h2) then f + g ∈ O(h1 + h2)

Loops: (repetition of instructions)

f ∈ O(h1), g ∈ O(h2) then f · g ∈ O(h1 · h2)

Dr Christian Konrad Big-O Notation 8 / 9

Runtime of Algorithms

Tool for the Analysis of Algorithms

We will express the runtime of algorithms using O-notation

This allows us to compare the runtimes of algorithms

Important: Find the slowest growing function f such that our
runtime is in O(f) (most algorithms have a runtime of O(2n))

Important Properties for the Analysis of Algorithms

Composition of instructions:

f ∈ O(h1), g ∈ O(h2) then f + g ∈ O(h1 + h2)

Loops: (repetition of instructions)

f ∈ O(h1), g ∈ O(h2) then f · g ∈ O(h1 · h2)

Dr Christian Konrad Big-O Notation 8 / 9

Runtime of Algorithms

Tool for the Analysis of Algorithms

We will express the runtime of algorithms using O-notation

This allows us to compare the runtimes of algorithms

Important: Find the slowest growing function f such that our
runtime is in O(f) (most algorithms have a runtime of O(2n))

Important Properties for the Analysis of Algorithms

Composition of instructions:

f ∈ O(h1), g ∈ O(h2) then f + g ∈ O(h1 + h2)

Loops: (repetition of instructions)

f ∈ O(h1), g ∈ O(h2) then f · g ∈ O(h1 · h2)

Dr Christian Konrad Big-O Notation 8 / 9

Runtime of Algorithms

Tool for the Analysis of Algorithms

We will express the runtime of algorithms using O-notation

This allows us to compare the runtimes of algorithms

Important: Find the slowest growing function f such that our
runtime is in O(f) (most algorithms have a runtime of O(2n))

Important Properties for the Analysis of Algorithms

Composition of instructions:

f ∈ O(h1), g ∈ O(h2) then f + g ∈ O(h1 + h2)

Loops: (repetition of instructions)

f ∈ O(h1), g ∈ O(h2) then f · g ∈ O(h1 · h2)

Dr Christian Konrad Big-O Notation 8 / 9

Runtime of Algorithms

Tool for the Analysis of Algorithms

We will express the runtime of algorithms using O-notation

This allows us to compare the runtimes of algorithms

Important: Find the slowest growing function f such that our
runtime is in O(f) (most algorithms have a runtime of O(2n))

Important Properties for the Analysis of Algorithms

Composition of instructions:

f ∈ O(h1), g ∈ O(h2) then f + g ∈ O(h1 + h2)

Loops: (repetition of instructions)

f ∈ O(h1), g ∈ O(h2) then f · g ∈ O(h1 · h2)

Dr Christian Konrad Big-O Notation 8 / 9

Runtime of Algorithms

Tool for the Analysis of Algorithms

We will express the runtime of algorithms using O-notation

This allows us to compare the runtimes of algorithms

Important: Find the slowest growing function f such that our
runtime is in O(f) (most algorithms have a runtime of O(2n))

Important Properties for the Analysis of Algorithms

Composition of instructions:

f ∈ O(h1), g ∈ O(h2) then f + g ∈ O(h1 + h2)

Loops: (repetition of instructions)

f ∈ O(h1), g ∈ O(h2) then f · g ∈ O(h1 · h2)

Dr Christian Konrad Big-O Notation 8 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1)

(individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n)

(Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n)

(e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2)

(potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc)

(used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n)

(works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
)

(big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

Hierachy

Rough incomplete Hierachy

Constant time: O(1) (individual operations)

Sub-logarithmic time: e.g., O(log log n)

Logarithmic time: O(log n) (Fast-Peak-Finding)

Poly-logarithmic time: e.g., O(log2 n),O(log10 n), . . .

Linear time: O(n) (e.g., time to read the input)

Quadratic time: O(n2) (potentially slow on big inputs)

Polynomial time: O(nc) (used to be considered efficient)

Exponential time: O(2n) (works only on very small inputs)

Super-exponential time: e.g. O(22
n
) (big trouble...)

Dr Christian Konrad Big-O Notation 9 / 9

