Big-O Notation
 COMS10017 - Algorithms 1

Dr Christian Konrad

Big O Notation

Definition: O-notation ("Big O")
Let $g(n)$ be a function. Then $O(g(n))$ is the set of functions:
$O(g(n))=\left\{f(n):\right.$ There exist positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$

Meaning: $f(n) \in O(g(n))$: " g grows asymptotically at least as fast as f up to constants"

O-Notation: Example

Example: $f(n)=\frac{1}{2} n^{2}-10 n$ and $g(n)=2 n^{2}$

O-Notation: Example

Example: $f(n)=\frac{1}{2} n^{2}-10 n$ and $g(n)=2 n^{2}$

Then: $g(n) \in O(f(n))$, since $6 f(n) \geq g(n)$, for every $n \geq n_{0}=60$

More Examples/Exercises

Recall:

$$
O(g(n))=\left\{f(n): \text { There exist positive constants } c \text { and } n_{0}\right.
$$ such that $0 \leq f(n) \leq \operatorname{cg}(n)$ for all $\left.n \geq n_{0}\right\}$

Exercises:

- $100 n \stackrel{?}{\in} O(n)$

More Examples/Exercises

Recall:

$$
\begin{aligned}
O(g(n))= & \left\{f(n): \text { There exist positive constants } c \text { and } n_{0}\right. \\
& \text { such that } \left.0 \leq f(n) \leq \operatorname{cg}(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

Exercises:

- $100 n \stackrel{?}{\in} O(n)$ Yes, chose $c=100, n_{0}=1$

More Examples/Exercises

Recall:

$$
\begin{aligned}
O(g(n))= & \left\{f(n): \text { There exist positive constants } c \text { and } n_{0}\right. \\
& \text { such that } \left.0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

Exercises:

- $100 n \stackrel{?}{\in} O(n)$ Yes, chose $c=100, n_{0}=1$
- $0.5 n \stackrel{?}{\in} O(n / \log n)$

More Examples/Exercises

Recall:

$$
\begin{aligned}
O(g(n))= & \left\{f(n): \text { There exist positive constants } c \text { and } n_{0}\right. \\
& \text { such that } \left.0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

Exercises:

- $100 n \stackrel{?}{\in} O(n)$ Yes, chose $c=100, n_{0}=1$
- $0.5 n \stackrel{?}{\in} O(n / \log n)$ No:

More Examples/Exercises

Recall:

$$
\begin{aligned}
O(g(n))= & \left\{f(n): \text { There exist positive constants } c \text { and } n_{0}\right. \\
& \text { such that } \left.0 \leq f(n) \leq \operatorname{cg}(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

Exercises:

- $100 n \stackrel{?}{\in} O(n)$ Yes, chose $c=100, n_{0}=1$
- $0.5 n \stackrel{?}{\in} O(n / \log n)$ No: Suppose that such constants c and n_{0} exist. Then, for every $n \geq n_{0}$:

More Examples/Exercises

Recall:

$$
\begin{aligned}
O(g(n))= & \left\{f(n): \text { There exist positive constants } c \text { and } n_{0}\right. \\
& \text { such that } \left.0 \leq f(n) \leq \operatorname{cg}(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

Exercises:

- $100 n \stackrel{?}{\in} O(n)$ Yes, chose $c=100, n_{0}=1$
- $0.5 n \stackrel{?}{\in} O(n / \log n)$ No: Suppose that such constants c and n_{0} exist. Then, for every $n \geq n_{0}$:

$$
0.5 n \leq c n / \log n
$$

More Examples/Exercises

Recall:

$$
\begin{aligned}
O(g(n))= & \left\{f(n): \text { There exist positive constants } c \text { and } n_{0}\right. \\
& \text { such that } \left.0 \leq f(n) \leq \operatorname{cg}(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

Exercises:

- $100 n \stackrel{?}{\in} O(n)$ Yes, chose $c=100, n_{0}=1$
- $0.5 n \stackrel{?}{\in} O(n / \log n)$ No: Suppose that such constants c and n_{0} exist. Then, for every $n \geq n_{0}$:

$$
\begin{aligned}
0.5 n & \leq c n / \log n \\
\log n & \leq 2 c
\end{aligned}
$$

More Examples/Exercises

Recall:

$$
\begin{aligned}
O(g(n))= & \left\{f(n): \text { There exist positive constants } c \text { and } n_{0}\right. \\
& \text { such that } \left.0 \leq f(n) \leq \operatorname{cg}(n) \text { for all } n \geq n_{0}\right\}
\end{aligned}
$$

Exercises:

- $100 n \stackrel{?}{\in} O(n)$ Yes, chose $c=100, n_{0}=1$
- $0.5 n \stackrel{?}{\in} O(n / \log n)$ No: Suppose that such constants c and n_{0} exist. Then, for every $n \geq n_{0}$:

$$
\begin{aligned}
0.5 n & \leq c n / \log n \\
\log n & \leq 2 c \\
n & \leq 2^{2 c}, \text { a contradiction, }
\end{aligned}
$$

since this does not hold for every $n>2^{2 c}$.

Recipes

Proving that $f \in O(g)$:

Recipes

Proving that $f \in O(g)$:
Find constants c, n_{0} as in the statement of the definition of $\operatorname{Big}-O$,
i.e., such that $f(n) \leq c \cdot g(n)$, for all $n \geq n_{0}$

Recipes

Proving that $f \in O(g)$:
Find constants c, n_{0} as in the statement of the definition of $\operatorname{Big}-O$,
i.e., such that $f(n) \leq c \cdot g(n)$, for all $n \geq n_{0}$

Proving that $f \notin O(g)$:

Recipes

Proving that $f \in O(g)$:
Find constants c, n_{0} as in the statement of the definition of $\operatorname{Big}-O$,
i.e., such that $f(n) \leq c \cdot g(n)$, for all $n \geq n_{0}$

Proving that $f \notin O(g)$:
Proof by contradiction: Assume that constants c, n_{0} exist as in the statement of the definition of $\operatorname{Big}-\mathrm{O}$ and derive a contradiction

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f+g \in O(h)$.

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f+g \in O(h)$.

Proof.

To Do: We need to find constants C, N_{0} such that

$$
f(n)+g(n) \leq C \cdot h(n), \text { for every } n \geq N_{0} .
$$

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f+g \in O(h)$.

Proof.

To Do: We need to find constants C, N_{0} such that

$$
f(n)+g(n) \leq C \cdot h(n), \text { for every } n \geq N_{0} .
$$

Since $f \in O(h)$ there exist constants c, n_{0} such that

$$
f(n) \leq c \cdot h(n), \text { for every } n \geq n_{0} .
$$

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f+g \in O(h)$.

Proof.

To Do: We need to find constants C, N_{0} such that

$$
f(n)+g(n) \leq C \cdot h(n), \text { for every } n \geq N_{0} .
$$

Since $f \in O(h)$ there exist constants c, n_{0} such that

$$
f(n) \leq c \cdot h(n), \text { for every } n \geq n_{0} .
$$

Since $g \in O(h)$ there exist constants $c^{\prime}, n_{0}^{\prime}$ such that

$$
g(n) \leq c^{\prime} h(n), \text { for every } n \geq n_{0}^{\prime}
$$

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f+g \in O(h)$.

Proof.

To Do: We need to find constants C, N_{0} such that

$$
f(n)+g(n) \leq C \cdot h(n), \text { for every } n \geq N_{0} .
$$

Since $f \in O(h)$ there exist constants c, n_{0} such that

$$
f(n) \leq c \cdot h(n), \text { for every } n \geq n_{0} .
$$

Since $g \in O(h)$ there exist constants $c^{\prime}, n_{0}^{\prime}$ such that

$$
g(n) \leq c^{\prime} h(n), \text { for every } n \geq n_{0}^{\prime}
$$

Let $C=c+c^{\prime}$ and let $N_{0}=\max \left\{n_{0}, n_{0}^{\prime}\right\}$. Then:

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f+g \in O(h)$.

Proof.

To Do: We need to find constants C, N_{0} such that

$$
f(n)+g(n) \leq C \cdot h(n), \text { for every } n \geq N_{0} .
$$

Since $f \in O(h)$ there exist constants c, n_{0} such that

$$
f(n) \leq c \cdot h(n), \text { for every } n \geq n_{0} .
$$

Since $g \in O(h)$ there exist constants $c^{\prime}, n_{0}^{\prime}$ such that

$$
g(n) \leq c^{\prime} h(n), \text { for every } n \geq n_{0}^{\prime}
$$

Let $C=c+c^{\prime}$ and let $N_{0}=\max \left\{n_{0}, n_{0}^{\prime}\right\}$. Then:
$f(n)+g(n)$

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f+g \in O(h)$.

Proof.

To Do: We need to find constants C, N_{0} such that

$$
f(n)+g(n) \leq C \cdot h(n), \text { for every } n \geq N_{0} .
$$

Since $f \in O(h)$ there exist constants c, n_{0} such that

$$
f(n) \leq c \cdot h(n), \text { for every } n \geq n_{0}
$$

Since $g \in O(h)$ there exist constants $c^{\prime}, n_{0}^{\prime}$ such that

$$
g(n) \leq c^{\prime} h(n), \text { for every } n \geq n_{0}^{\prime}
$$

Let $C=c+c^{\prime}$ and let $N_{0}=\max \left\{n_{0}, n_{0}^{\prime}\right\}$. Then:

$$
f(n)+g(n) \leq c h(n)+c^{\prime} h(n)
$$

Sum of Two Functions

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f+g \in O(h)$.

Proof.

To Do: We need to find constants C, N_{0} such that

$$
f(n)+g(n) \leq C \cdot h(n), \text { for every } n \geq N_{0} .
$$

Since $f \in O(h)$ there exist constants c, n_{0} such that

$$
f(n) \leq c \cdot h(n), \text { for every } n \geq n_{0}
$$

Since $g \in O(h)$ there exist constants $c^{\prime}, n_{0}^{\prime}$ such that

$$
g(n) \leq c^{\prime} h(n), \text { for every } n \geq n_{0}^{\prime}
$$

Let $C=c+c^{\prime}$ and let $N_{0}=\max \left\{n_{0}, n_{0}^{\prime}\right\}$. Then:

$$
f(n)+g(n) \leq c h(n)+c^{\prime} h(n)=C \cdot h(n) \text { for every } n \geq N_{0} .
$$

Further Properties

> Lemma (Polynomials)
> Let $f(n)=c_{0}+c_{1} n+c_{2} n^{2}+c_{3} n^{3}+\cdots+c_{k} n^{k}$, for some integer k that is independent of n. Then: $f(n) \in O\left(n^{k}\right)$.

Further Properties

Lemma (Polynomials)

Let $f(n)=c_{0}+c_{1} n+c_{2} n^{2}+c_{3} n^{3}+\cdots+c_{k} n^{k}$, for some integer k that is independent of n. Then: $f(n) \in O\left(n^{k}\right)$.

Proof: Apply statement on last slide $k=O(1)$ times

Further Properties

Lemma (Polynomials)

Let $f(n)=c_{0}+c_{1} n+c_{2} n^{2}+c_{3} n^{3}+\cdots+c_{k} n^{k}$, for some integer k that is independent of n. Then: $f(n) \in O\left(n^{k}\right)$.

Proof: Apply statement on last slide $k=O(1)$ times
Attention: Wrong proof of $n^{2} \in O(n)$: (this is clearly wrong)

Further Properties

Lemma (Polynomials)

Let $f(n)=c_{0}+c_{1} n+c_{2} n^{2}+c_{3} n^{3}+\cdots+c_{k} n^{k}$, for some integer k that is independent of n. Then: $f(n) \in O\left(n^{k}\right)$.

Proof: Apply statement on last slide $k=O(1)$ times
Attention: Wrong proof of $n^{2} \in O(n)$: (this is clearly wrong)

$$
n^{2}=n+n+\underbrace{n+\ldots n}_{n-2 \text { times }}
$$

Further Properties

Lemma (Polynomials)

Let $f(n)=c_{0}+c_{1} n+c_{2} n^{2}+c_{3} n^{3}+\cdots+c_{k} n^{k}$, for some integer k that is independent of n. Then: $f(n) \in O\left(n^{k}\right)$.

Proof: Apply statement on last slide $k=O(1)$ times
Attention: Wrong proof of $n^{2} \in O(n)$: (this is clearly wrong)

$$
n^{2}=n+n+\underbrace{n+\ldots n}_{n-2 \text { times }}=O(n)+O(n)+\underbrace{n+\ldots n}_{n-2 \text { times }}
$$

Further Properties

Lemma (Polynomials)

Let $f(n)=c_{0}+c_{1} n+c_{2} n^{2}+c_{3} n^{3}+\cdots+c_{k} n^{k}$, for some integer k that is independent of n. Then: $f(n) \in O\left(n^{k}\right)$.

Proof: Apply statement on last slide $k=O(1)$ times
Attention: Wrong proof of $n^{2} \in O(n)$: (this is clearly wrong)

$$
\begin{aligned}
n^{2} & =n+n+\underbrace{n+\ldots n}_{n-2 \text { times }}=O(n)+O(n)+\underbrace{n+\ldots n}_{n-2 \text { times }} \\
& =O(n)+\underbrace{n+\ldots n}_{n-2 \text { times }}
\end{aligned}
$$

Further Properties

Lemma (Polynomials)

Let $f(n)=c_{0}+c_{1} n+c_{2} n^{2}+c_{3} n^{3}+\cdots+c_{k} n^{k}$, for some integer k that is independent of n. Then: $f(n) \in O\left(n^{k}\right)$.

Proof: Apply statement on last slide $k=O(1)$ times
Attention: Wrong proof of $n^{2} \in O(n)$: (this is clearly wrong)

$$
\begin{aligned}
n^{2} & =n+n+\underbrace{n+\ldots n}_{n-2 \text { times }}=O(n)+O(n)+\underbrace{n+\ldots n}_{n-2 \text { times }} \\
& =O(n)+\underbrace{n+\ldots n}_{n-2 \text { times }}=O(n)+O(n)+\underbrace{n+\ldots n}_{n-3 \text { times }}=
\end{aligned}
$$

Further Properties

Lemma (Polynomials)

Let $f(n)=c_{0}+c_{1} n+c_{2} n^{2}+c_{3} n^{3}+\cdots+c_{k} n^{k}$, for some integer k that is independent of n. Then: $f(n) \in O\left(n^{k}\right)$.

Proof: Apply statement on last slide $k=O(1)$ times
Attention: Wrong proof of $n^{2} \in O(n)$: (this is clearly wrong)

$$
\begin{aligned}
n^{2} & =n+n+\underbrace{n+\ldots n}_{n-2 \text { times }}=O(n)+O(n)+\underbrace{n+\ldots n}_{n-2 \text { times }} \\
& =O(n)+\underbrace{n+\ldots n}_{n-2 \text { times }}=O(n)+O(n)+\underbrace{n+\ldots n}_{n-3 \text { times }}= \\
& =O(n)+\underbrace{n+\ldots n}_{n-3 \text { times }}
\end{aligned}
$$

Further Properties

Lemma (Polynomials)

Let $f(n)=c_{0}+c_{1} n+c_{2} n^{2}+c_{3} n^{3}+\cdots+c_{k} n^{k}$, for some integer k that is independent of n. Then: $f(n) \in O\left(n^{k}\right)$.

Proof: Apply statement on last slide $k=O(1)$ times
Attention: Wrong proof of $n^{2} \in O(n)$: (this is clearly wrong)

$$
\begin{aligned}
n^{2} & =n+n+\underbrace{n+\ldots n}_{n-2 \text { times }}=O(n)+O(n)+\underbrace{n+\ldots n}_{n-2 \text { times }} \\
& =O(n)+\underbrace{n+\ldots n}_{n-2 \text { times }}=O(n)+O(n)+\underbrace{n+\ldots n}_{n-3 \text { times }}= \\
& =O(n)+\underbrace{n+\ldots n}_{n-3 \text { times }}=\cdots=O(n) .
\end{aligned}
$$

Further Properties

Lemma (Polynomials)

Let $f(n)=c_{0}+c_{1} n+c_{2} n^{2}+c_{3} n^{3}+\cdots+c_{k} n^{k}$, for some integer k that is independent of n. Then: $f(n) \in O\left(n^{k}\right)$.

Proof: Apply statement on last slide $k=O(1)$ times
Attention: Wrong proof of $n^{2} \in O(n)$: (this is clearly wrong)

$$
\begin{aligned}
n^{2} & =n+n+\underbrace{n+\ldots n}_{n-2 \text { times }}=O(n)+O(n)+\underbrace{n+\ldots n}_{n-2 \text { times }} \\
& =O(n)+\underbrace{n+\ldots n}_{n-2 \text { times }}=O(n)+O(n)+\underbrace{n+\ldots n}_{n-3 \text { times }}= \\
& =O(n)+\underbrace{n+\ldots n}_{n-3 \text { times }}=\cdots=O(n) .
\end{aligned}
$$

Application of statement on last slide n times! (only allowed to apply statement $O(1)$ times!)

Runtime of Algorithms

Tool for the Analysis of Algorithms

- We will express the runtime of algorithms using O-notation

Runtime of Algorithms

Tool for the Analysis of Algorithms

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms

Runtime of Algorithms

Tool for the Analysis of Algorithms

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms
- Important: Find the slowest growing function f such that our runtime is in $O(f)$ (most algorithms have a runtime of $O\left(2^{n}\right)$)

Runtime of Algorithms

Tool for the Analysis of Algorithms

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms
- Important: Find the slowest growing function f such that our runtime is in $O(f)$ (most algorithms have a runtime of $O\left(2^{n}\right)$)

Important Properties for the Analysis of Algorithms

Runtime of Algorithms

Tool for the Analysis of Algorithms

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms
- Important: Find the slowest growing function f such that our runtime is in $O(f)$ (most algorithms have a runtime of $O\left(2^{n}\right)$)

Important Properties for the Analysis of Algorithms

- Composition of instructions:

$$
f \in O\left(h_{1}\right), g \in O\left(h_{2}\right) \text { then } f+g \in O\left(h_{1}+h_{2}\right)
$$

Runtime of Algorithms

Tool for the Analysis of Algorithms

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms
- Important: Find the slowest growing function f such that our runtime is in $O(f)$ (most algorithms have a runtime of $O\left(2^{n}\right)$)

Important Properties for the Analysis of Algorithms

- Composition of instructions:

$$
f \in O\left(h_{1}\right), g \in O\left(h_{2}\right) \text { then } f+g \in O\left(h_{1}+h_{2}\right)
$$

- Loops: (repetition of instructions)

$$
f \in O\left(h_{1}\right), g \in O\left(h_{2}\right) \text { then } f \cdot g \in O\left(h_{1} \cdot h_{2}\right)
$$

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (Fast-Peak-Finding)

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (Fast-PEak-Finding)
- Poly-logarithmic time: e.g., $O\left(\log ^{2} n\right), O\left(\log ^{10} n\right), \ldots$

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (Fast-Peak-Finding)
- Poly-logarithmic time: e.g., $O\left(\log ^{2} n\right), O\left(\log ^{10} n\right), \ldots$
- Linear time: $O(n)$

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (Fast-Peak-Finding)
- Poly-logarithmic time: e.g., $O\left(\log ^{2} n\right), O\left(\log ^{10} n\right), \ldots$
- Linear time: $O(n)$ (e.g., time to read the input)

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (Fast-Peak-Finding)
- Poly-logarithmic time: e.g., $O\left(\log ^{2} n\right), O\left(\log ^{10} n\right), \ldots$
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O\left(n^{2}\right)$

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (Fast-Peak-Finding)
- Poly-logarithmic time: e.g., $O\left(\log ^{2} n\right), O\left(\log ^{10} n\right), \ldots$
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O\left(n^{2}\right)$ (potentially slow on big inputs)

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (Fast-Peak-Finding)
- Poly-logarithmic time: e.g., $O\left(\log ^{2} n\right), O\left(\log ^{10} n\right), \ldots$
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O\left(n^{2}\right)$ (potentially slow on big inputs)
- Polynomial time: $O\left(n^{c}\right)$

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (Fast-Peak-Finding)
- Poly-logarithmic time: e.g., $O\left(\log ^{2} n\right), O\left(\log ^{10} n\right), \ldots$
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O\left(n^{2}\right)$ (potentially slow on big inputs)
- Polynomial time: $O\left(n^{c}\right)$ (used to be considered efficient)

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (Fast-Peak-Finding)
- Poly-logarithmic time: e.g., $O\left(\log ^{2} n\right), O\left(\log ^{10} n\right), \ldots$
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O\left(n^{2}\right)$ (potentially slow on big inputs)
- Polynomial time: $O\left(n^{c}\right)$ (used to be considered efficient)
- Exponential time: $O\left(2^{n}\right)$

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FASt-PEAK-Finding)
- Poly-logarithmic time: e.g., $O\left(\log ^{2} n\right), O\left(\log ^{10} n\right), \ldots$
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O\left(n^{2}\right)$ (potentially slow on big inputs)
- Polynomial time: $O\left(n^{c}\right)$ (used to be considered efficient)
- Exponential time: $O\left(2^{n}\right)$ (works only on very small inputs)

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FASt-PEAK-Finding)
- Poly-logarithmic time: e.g., $O\left(\log ^{2} n\right), O\left(\log ^{10} n\right), \ldots$
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O\left(n^{2}\right)$ (potentially slow on big inputs)
- Polynomial time: $O\left(n^{c}\right)$ (used to be considered efficient)
- Exponential time: $O\left(2^{n}\right)$ (works only on very small inputs)
- Super-exponential time: e.g. $O\left(2^{2^{n}}\right)$

Hierachy

Rough incomplete Hierachy

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FASt-PEAK-Finding)
- Poly-logarithmic time: e.g., $O\left(\log ^{2} n\right), O\left(\log ^{10} n\right), \ldots$
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O\left(n^{2}\right)$ (potentially slow on big inputs)
- Polynomial time: $O\left(n^{c}\right)$ (used to be considered efficient)
- Exponential time: $O\left(2^{n}\right)$ (works only on very small inputs)
- Super-exponential time: e.g. $O\left(2^{2^{n}}\right)$ (big trouble...)

