Θ and Ω Notation COMS10017 - Algorithms 1

Dr Christian Konrad

O-notation: Upper Bound

O-notation: Upper Bound

• Runtime O(f(n)): On any input of length n, the runtime is bounded by some function in O(f(n))

O-notation: Upper Bound

- Runtime O(f(n)): On any input of length n, the runtime is bounded by some function in O(f(n))
- For example, if the runtime is $O(n^2)$ then the actual runtime could also be in $O(\log n)$, O(n), $O(n \log n)$, $O(n \sqrt{n})$, ...

O-notation: Upper Bound

- Runtime O(f(n)): On any input of length n, the runtime is bounded by some function in O(f(n))
- For example, if the runtime is $O(n^2)$ then the actual runtime could also be in $O(\log n)$, O(n), $O(n \log n)$, $O(n\sqrt{n})$, ...

This is a strong point:

O-notation: Upper Bound

- Runtime O(f(n)): On any input of length n, the runtime is bounded by some function in O(f(n))
- For example, if the runtime is $O(n^2)$ then the actual runtime could also be in $O(\log n)$, O(n), $O(n \log n)$, $O(n\sqrt{n})$, ...

This is a strong point:

• Worst-case runtime: A runtime of O(f(n)) guarantees that the algorithm will not be slower, but may be faster

O-notation: Upper Bound

- Runtime O(f(n)): On any input of length n, the runtime is bounded by some function in O(f(n))
- For example, if the runtime is $O(n^2)$ then the actual runtime could also be in $O(\log n)$, O(n), $O(n \log n)$, $O(n \sqrt{n})$, . . .

This is a strong point:

- Worst-case runtime: A runtime of O(f(n)) guarantees that the algorithm will not be slower, but may be faster
- Example: FAST-PEAK-FINDING often faster than $5 \log n$

O-notation: Upper Bound

- Runtime O(f(n)): On any input of length n, the runtime is bounded by some function in O(f(n))
- For example, if the runtime is $O(n^2)$ then the actual runtime could also be in $O(\log n)$, O(n), $O(n \log n)$, $O(n \sqrt{n})$, ...

This is a strong point:

- Worst-case runtime: A runtime of O(f(n)) guarantees that the algorithm will not be slower, but may be faster
- Example: Fast-Peak-Finding often faster than 5 log *n*

How to Avoid Ambiguities

• Θ-notation: Growth is precisely determined (up to constants)

O-notation: Upper Bound

- Runtime O(f(n)): On any input of length n, the runtime is bounded by some function in O(f(n))
- For example, if the runtime is $O(n^2)$ then the actual runtime could also be in $O(\log n)$, O(n), $O(n \log n)$, $O(n \sqrt{n})$, ...

This is a strong point:

- Worst-case runtime: A runtime of O(f(n)) guarantees that the algorithm will not be slower, but may be faster
- Example: Fast-Peak-Finding often faster than 5 log *n*

How to Avoid Ambiguities

- Θ-notation: Growth is precisely determined (up to constants)
- Ω -notation: Gives us a lower bound (up to constants)

Θ-notation

"Theta"-notation:

Growth is precisely determined up to constants

Definition: Θ-notation ("Theta")

Let g(n) be a function. Then $\Theta(g(n))$ is the set of functions:

 $\Theta(g(n)) = \{f(n) : \text{ There exist positive constants } c_1, c_2 \text{ and } n_0 \\ \text{s.t. } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

Θ-notation

"Theta"-notation:

Growth is precisely determined up to constants

Definition: Θ-notation ("Theta")

Let g(n) be a function. Then $\Theta(g(n))$ is the set of functions:

 $\Theta(g(n)) = \{f(n) : \text{ There exist positive constants } c_1, c_2 \text{ and } n_0 \\ \text{s.t. } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$

 $f \in \Theta(g)$: "f is asymptotically sandwiched between constant multiples of g"

Lemma

The following statements are equivalent:

- $f \in \Theta(g)$
- $g \in \Theta(f)$

Lemma

The following statements are equivalent:

- $f \in \Theta(g)$
- $g \in \Theta(f)$

Proof.

Lemma

The following statements are equivalent:

- $\bullet f \in \Theta(g)$
- $g \in \Theta(f)$

Proof. Suppose that $f \in \Theta(g)$.

Lemma

The following statements are equivalent:

- $g \in \Theta(f)$

Proof. Suppose that $f \in \Theta(g)$. To show that $g \in \Theta(f)$, we need to prove that there are positive constants C_1, C_2, N_0 such that

$$0 \le C_1 f(n) \le g(n) \le C_2 f(n), \text{ for all } n \ge N_0 \ . \tag{1}$$

Lemma

The following statements are equivalent:

Proof. Suppose that $f \in \Theta(g)$. To show that $g \in \Theta(f)$, we need to prove that there are positive constants C_1, C_2, N_0 such that

$$0 \le C_1 f(n) \le g(n) \le C_2 f(n), \text{ for all } n \ge N_0. \tag{1}$$

Since $f \in \Theta(g)$, there are positive constants c_1, c_2, n_0 s.t.

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ for all } n \ge n_0.$$

Lemma

The following statements are equivalent:

- $g \in \Theta(f)$

Proof. Suppose that $f \in \Theta(g)$. To show that $g \in \Theta(f)$, we need to prove that there are positive constants C_1, C_2, N_0 such that

$$0 \le C_1 f(n) \le g(n) \le C_2 f(n), \text{ for all } n \ge N_0. \tag{1}$$

Since $f \in \Theta(g)$, there are positive constants c_1, c_2, n_0 s.t.

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ for all } n \ge n_0. \tag{2}$$

Setting $C_1 = \frac{1}{c_2}$, $C_2 = \frac{1}{c_1}$, $N_0 = n_0$, then (1) is equivalent to (2).

Lemma

The following statements are equivalent:

- $g \in \Theta(f)$

Proof. Suppose that $f \in \Theta(g)$. To show that $g \in \Theta(f)$, we need to prove that there are positive constants C_1, C_2, N_0 such that

$$0 \le C_1 f(n) \le g(n) \le C_2 f(n), \text{ for all } n \ge N_0. \tag{1}$$

Since $f \in \Theta(g)$, there are positive constants c_1, c_2, n_0 s.t.

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ for all } n \ge n_0.$$

Setting $C_1 = \frac{1}{c_2}$, $C_2 = \frac{1}{c_1}$, $N_0 = n_0$, then (1) is equivalent to (2).

More on Theta

Lemma (Relationship between Θ and Big-O)

The following statements are equivalent:

- $\textbf{0} \ \ f \in O(g) \ \ \text{and} \ \ g \in O(f)$

More on Theta

Lemma (Relationship between Θ and Big-O)

The following statements are equivalent:

- $2 f \in O(g) \text{ and } g \in O(f)$

Proof. \rightarrow Exercise.

More on Theta

Lemma (Relationship between Θ and Big-O)

The following statements are equivalent:

- $② f \in O(g) and g \in O(f)$

Proof. \rightarrow Exercise.

Runtime of Algorithm in $\Theta(f(n))$?

More on Theta

Lemma (Relationship between Θ and Big-O)

The following statements are equivalent:

- 2 $f \in O(g)$ and $g \in O(f)$

Proof. \rightarrow Exercise.

Runtime of Algorithm in $\Theta(f(n))$?

• Only makes sense if the algorithm always requires $\Theta(f(n))$ steps, i.e., both the best-case and worst-case runtime are $\Theta(f(n))$

More on Theta

Lemma (Relationship between Θ and Big-O)

The following statements are equivalent:

- 2 $f \in O(g)$ and $g \in O(f)$

Proof. \rightarrow Exercise.

Runtime of Algorithm in $\Theta(f(n))$?

- Only makes sense if the algorithm always requires $\Theta(f(n))$ steps, i.e., both the best-case and worst-case runtime are $\Theta(f(n))$
- This is not the case in FAST-PEAK-FINDING

More on Theta

Lemma (Relationship between Θ and Big-O)

The following statements are equivalent:

- $f \in \Theta(g)$
- 2 $f \in O(g)$ and $g \in O(f)$

Proof. \rightarrow Exercise.

Runtime of Algorithm in $\Theta(f(n))$?

- Only makes sense if the algorithm always requires $\Theta(f(n))$ steps, i.e., both the best-case and worst-case runtime are $\Theta(f(n))$
- This is not the case in FAST-PEAK-FINDING
- However, correct to say that the worst-case runtime of an algorithms is $\Theta(f(n))$

Ω -notation

Big Omega-Notation:

Definition: Ω -notation ("Big Omega")

Let g(n) be a function. Then $\Omega(g(n))$ is the set of functions:

 $\Omega(g(n)) = \{f(n) : \text{ There exist positive constants } c \text{ and } n_0 \}$ such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0\}$

Ω -notation

Big Omega-Notation:

Definition: Ω-notation ("Big Omega") Let g(n) be a function. Then $\Omega(g(n))$ is the set of functions: $\Omega(g(n)) = \{f(n) : \text{ There exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0\}$

 $f \in \Omega(g)$: "f grows asymptotically at least as fast as g up to constants"

Lemma

The following statements are equivalent:

- $g \in O(f)$

Lemma

The following statements are equivalent:

- $\bullet f \in \Omega(g)$
- $g \in O(f)$

Proof.

Lemma

The following statements are equivalent:

- $f \in \Omega(g)$
- $g \in O(f)$

Proof. \rightarrow Exercise.

Lemma

The following statements are equivalent:

 $\bullet f \in \Omega(g)$

 $g \in O(f)$

Proof. \rightarrow Exercise.

Examples: Big Omega

Lemma

The following statements are equivalent:

- $\bullet f \in \Omega(g)$
- $g \in O(f)$

Proof. \rightarrow Exercise.

Examples: Big Omega

• $10n^2 \in \Omega(n)$

Lemma

The following statements are equivalent:

- $f \in \Omega(g)$
- $g \in O(f)$

Proof. \rightarrow Exercise.

Examples: Big Omega

- $10n^2 \in \Omega(n)$
- $6^n \in \Omega(n^8)$

Lemma

The following statements are equivalent:

- $f \in \Omega(g)$
- $g \in O(f)$

Proof. \rightarrow Exercise.

Examples: Big Omega

- $10n^2 \in \Omega(n)$
- $6^n \in \Omega(n^8)$
- ... (reverse examples for $f \in O(g)$)

Lemma

The following statements are equivalent:

- $\bullet f \in \Omega(g)$
- $g \in O(f)$

Proof. \rightarrow Exercise.

Examples: Big Omega

- $10n^2 \in \Omega(n)$
- $6^n \in \Omega(n^8)$
- ... (reverse examples for $f \in O(g)$)

Runtime of Algorithm in $\Omega(f)$?

Lemma

The following statements are equivalent:

- $f \in \Omega(g)$
- $g \in O(f)$

Proof. \rightarrow Exercise.

Examples: Big Omega

- $10n^2 \in \Omega(n)$
- $6^n \in \Omega(n^8)$
- ... (reverse examples for $f \in O(g)$)

Runtime of Algorithm in $\Omega(f)$?

Only makes sense if best-case runtime is in $\Omega(f)$

Notation

• O, Ω , Θ are often used in equations

Notation

- O, Ω , Θ are often used in equations
- $\bullet \, \in \, \mathsf{is} \, \, \mathsf{then} \, \, \mathsf{replaced} \, \, \mathsf{by} =$

Notation

- O, Ω , Θ are often used in equations
- ullet \in is then replaced by =

Notation

- O, Ω , Θ are often used in equations
- ullet \in is then replaced by =

•
$$4n^3 = O(n^3)$$

Notation

- O, Ω , Θ are often used in equations
- $\bullet \in \mathsf{is} \mathsf{ then} \mathsf{ replaced} \mathsf{ by} =$

- $4n^3 = O(n^3)$
- n + 10 = n + O(1)

Notation

- O, Ω , Θ are often used in equations
- ullet \in is then replaced by =

- $4n^3 = O(n^3)$
- n + 10 = n + O(1)
- $10n^2 + 1/n = 10n^2 + O(1)$

Notation

- O, Ω , Θ are often used in equations
- ullet \in is then replaced by =

Examples

- $4n^3 = O(n^3)$
- n + 10 = n + O(1)
- $10n^2 + 1/n = 10n^2 + O(1)$

Notation

- O, Ω , Θ are often used in equations
- ullet \in is then replaced by =

Examples

- $4n^3 = O(n^3)$
- n + 10 = n + O(1)
- $10n^2 + 1/n = 10n^2 + O(1)$

Observe

Sloppy but very convenient

Notation

- O, Ω , Θ are often used in equations
- ullet \in is then replaced by =

Examples

- $4n^3 = O(n^3)$
- n + 10 = n + O(1)
- $10n^2 + 1/n = 10n^2 + O(1)$

- Sloppy but very convenient
- When using O, Θ , Ω in equations then details get lost

Notation

- O, Ω , Θ are often used in equations
- ullet \in is then replaced by =

Examples

- $4n^3 = O(n^3)$
- n + 10 = n + O(1)
- $10n^2 + 1/n = 10n^2 + O(1)$

- Sloppy but very convenient
- When using O, Θ , Ω in equations then details get lost
- This allows us to focus on the essential part of an equation

Notation

- O, Ω , Θ are often used in equations
- ullet \in is then replaced by =

Examples

- $4n^3 = O(n^3)$
- n + 10 = n + O(1)
- $10n^2 + 1/n = 10n^2 + O(1)$

- Sloppy but very convenient
- When using O, Θ , Ω in equations then details get lost
- This allows us to focus on the essential part of an equation
- Not reversible! E.g., n + 10 = n + O(1) but $n + O(1) \neq n + 10...$