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Runtime of Algorithms

Consider an algorithm A for a specific problem P

Set of Potential Inputs
@ Let S(n) be the set of all potential inputs of length n for P
e For X € 5(n), let T(X) be the runtime of A on input X

Worst-case Runtime:  max T(X)

XeS(n)
Best-case Runtime: min T(X)
XeS(n)
1
Average-case Runtime: —— Z T(X)
[5(n)| XeS(n)
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Linear Search:

e Input: Array A of n integers from range {0,1,2,... k — 1},
for some integer k, integer t € {0,1,2,...,k—1}
@ Output: 1, if A contains t, 0 otherwise

Require: Array A, integer t
fori=0,...,n—1do
if A[i] =t then
return 1
return 0
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Linear Search:

e Input: Array A of n integers from range {0,1,2,... k — 1},
for some integer k, integer t € {0,1,2,...,k—1}
@ Output: 1, if A contains t, 0 otherwise

Worst-case Runtime: ©(n) | Require: Array A, integer t

E.g. on any input with fori=0,...,n—1do

Ali] # t for every | if A[i] =t then
return 1

Best-case Runtime: O(1) return 0

On any input with A[0] =t

Average-case Runtime: (over all possible inputs of length n)
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Average-case Analysis of Linear Search

Possible Inputs of Length n

S(n) := {arrays A of length n with A[i] € {0,1,2,..., k —1},
forevery 0 <i<n-—1}

Dr Christian Konrad Linear and Binary Search 4/ 8



Average-case Analysis of Linear Search

Possible Inputs of Length n

{arrays A of length n with A[i] € {0,1,2,...,k — 1},
forevery 0 <i<n-—1}

IS(n)|] = k™.

S(n) :=

Dr Christian Konrad Linear and Binary Search



Average-case Analysis of Linear Search

Possible Inputs of Length n

S(n) := {arrays A of length n with A[i] € {0,1,2,..., k —1},
forevery 0 <i<n-—1}
IS(m)| = k".
Auxiliary Function: For A € S(n),t € {0,1,...,k —1}:
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Average-case Analysis of Linear Search

Possible Inputs of Length n

S(n) := {arrays A of length n with A[i] € {0,1,2,..., k —1},
forevery 0 <i<n-—1}
IS(m)| = k".

Auxiliary Function: For A € S(n),t € {0,1,...,k —1}:
LErT(A, t) = min{i : A[li]=1t}.

If no such position exists then LEFT(A, t) = n.

Examples:
e LEFT(23192,9) =3
e LEFT(0000,1) =4
— Linear search loop executed LEFT(X, t) + 1 times
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Average-case Analysis of Linear Search (continued)

Average-case Runtime for k = 2: (binary strings)

We compute average number of steps the loop is executed (t = 1)
1
AVG = —— Y Lerr(A1)+1
ECIRA
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Average-case Analysis of Linear Search (continued)

Average-case Runtime for k = 2: (binary strings)
We compute average number of steps the loop is executed (t = 1)

AVG = | 5(1n)|A€zs(:n)LEFT(A,1)+1
= 27" ((§|{A ; LEFT(A,l):i}|-(i+1)> +(n+1)) :
i=0
0000...01 XXX .. X
i times n—i—1 times
= <<Zz” 1= (/+1)> (n +1)>
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Average-case Analysis of Linear Search (continued)

Average-case Runtime for k = 2: (binary strings)
We compute average number of steps the loop is executed (t = 1)

AVG = ‘Szh)|A2;;)LEFT(A,1)+—1
n—1
27" ((Z [{A : LEFT(A, 1) =i}|- (i + 1)) +(n+ 1)) :
i=0

0000 ...01 XXX ... X

i times n—i—1 times

= <<22” 1-i (,+1)> (n +1)) —  AVG-case

runtime is O(1)

2/+1

_ (% >44n+nzn<2+1_3_0(y
i=0
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(Trick for Bounding Sums)

How to bound > 7

i= 02':

1
<}
N ~.
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(Trick for Bounding Sums)

How to bound > 7

102':
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Sn:: *’
i=0
Trick: Consider 25
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(Trick for Bounding Sums)

How to bound }"7 2,:
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n 2 4 8 16 on
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(Trick for Bounding Sums)

How to bound > 7

102':
"
Sn:: *’
i=0
Trick: Consider 25
S, = 1+3+§+i+ + 0
n 2 4 8 16 on
15 = 1+2+3+ -
27" T 4 8 16 2n+1
. 1 11 1 1 n
O R R R TR T
(n 1) n 1_ 11
2 2n+
f1="7_1 =
£ 2f 2n 1-3

—+ 5, <2
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Binary Search

Binary Search:
@ Input: A sorted array A of integers, an integer t

@ Output: —1 if A does not contain t, otherwise a position /
such that A[i] =t
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Binary Search

Binary Search:
@ Input: A sorted array A of integers, an integer t

@ Output: —1 if A does not contain t, otherwise a position /
such that A[i] =t

Require: Sorted array A of length n, integer t
if |A| <2 then
Check A[0] and A[1] and return answer
if A[|n/2]] =t then
return |[n/2]
else if A[[n/2]] > t then

return BINARY-SEARCH(A[O,...,[n/2] —1])

else
return |n/2]| + 1 + BINARY-SEARCH(A[|n/2]| +
1,n—1])

Algorithm BINARY-SEARCH
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Worst-case Analysis of Binary Search

Worst-case Analysis
e Without recursive calls, we spend O(1) time in the function

e Worst-case runtime = "maximum # of recursive calls"-O(1)

Y
@ Observe that in iteration i the size of the array is at most half
the size than in iteration / — 1

We stop as soon as the size of the array is at most two

Hence, we obtain the necessary and sufficient condition:

n
2 =2

Solving 57 < 2 yields r > logn — 1. Hence, r = [logn —1] <logn
iterations are enough.

Worst-case runtime of Binary Search: O(log n)
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