Proofs by Induction (Recap) COMS10017 - Algorithms 1

Dr Christian Konrad

Proofs by Induction and Loop Invariants

Proofs by Induction

Proofs by Induction and Loop Invariants

Proofs by Induction

- Correctness of an algorithm often requires proving that a property holds throughout the algorithm (e.g. loop invariant)

Proofs by Induction and Loop Invariants

Proofs by Induction

- Correctness of an algorithm often requires proving that a property holds throughout the algorithm (e.g. loop invariant)
- This is often done by induction

Proofs by Induction and Loop Invariants

Proofs by Induction

- Correctness of an algorithm often requires proving that a property holds throughout the algorithm (e.g. loop invariant)
- This is often done by induction
- We will use proofs by induction for proving loop invariants (soon) and for solving recurrences (later)

Proofs by Induction

Structure of a Proof by Induction

Proofs by Induction

Structure of a Proof by Induction

(1) Statement to Prove: $P(n)$ holds for all $n \in \mathbb{N}$ (or $n \in \mathbb{N} \cup\{0\}$) (or n integer and $n \geq k$) (or similar)

Proofs by Induction

Structure of a Proof by Induction

(1) Statement to Prove: $P(n)$ holds for all $n \in \mathbb{N}$ (or $n \in \mathbb{N} \cup\{0\}$) (or n integer and $n \geq k$) (or similar)
(2) Induction hypothesis: Assume that $P(n)$ holds

Proofs by Induction

Structure of a Proof by Induction

(1) Statement to Prove:
$P(n)$ holds for all $n \in \mathbb{N}$ (or $n \in \mathbb{N} \cup\{0\}$) (or n integer and $n \geq k$) (or similar)
(2) Induction hypothesis: Assume that $P(n)$ holds

(3) Induction step:

Prove that $P(n+1)$ also holds

Proofs by Induction

Structure of a Proof by Induction

(1) Statement to Prove:
$P(n)$ holds for all $n \in \mathbb{N}$ (or $n \in \mathbb{N} \cup\{0\}$)
(or n integer and $n \geq k$) (or similar)
(2) Induction hypothesis:

Assume that $P(n)$ holds

(3) Induction step:

Prove that $P(n+1)$ also holds
If domino n falls then domino $n+1$
falls as well

Proofs by Induction

Structure of a Proof by Induction

(1) Statement to Prove:
$P(n)$ holds for all $n \in \mathbb{N}$ (or $n \in \mathbb{N} \cup\{0\}$) (or n integer and $n \geq k$) (or similar)
(2) Induction hypothesis:

Assume that $P(n)$ holds

(3) Induction step:

Prove that $P(n+1)$ also holds
If domino n falls then domino $n+1$ falls as well
(1) Base case: Prove that $P(1)$ holds Domino 1 falls

Structure of a Proof by Induction

Structure of a Proof by Induction

- Statement to prove: For example, for all $n \geq k P(n)$ is true

Structure of a Proof by Induction

- Statement to prove: For example, for all $n \geq k P(n)$ is true

$$
\forall n \geq 0: \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

Structure of a Proof by Induction

- Statement to prove: For example, for all $n \geq k P(n)$ is true

$$
\forall n \geq 0: \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

- Base case: Prove that $P(k)$ holds

Structure of a Proof by Induction

- Statement to prove: For example, for all $n \geq k P(n)$ is true

$$
\forall n \geq 0: \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

- Base case: Prove that $P(k)$ holds

$$
n=0: \sum_{i=0}^{0} i=0=\frac{0 \cdot(0+1)}{2} \cdot \checkmark
$$

Structure of a Proof by Induction

- Statement to prove: For example, for all $n \geq k P(n)$ is true

$$
\forall n \geq 0: \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

- Base case: Prove that $P(k)$ holds

$$
n=0: \sum_{i=0}^{0} i=0=\frac{0 \cdot(0+1)}{2} \cdot \checkmark
$$

- Induction hypothesis: Assume that P holds for some n (Strong induction: for all m with $k \leq m \leq n$)

Structure of a Proof by Induction

- Statement to prove: For example, for all $n \geq k P(n)$ is true

$$
\forall n \geq 0: \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

- Base case: Prove that $P(k)$ holds

$$
n=0: \sum_{i=0}^{0} i=0=\frac{0 \cdot(0+1)}{2} . \checkmark
$$

- Induction hypothesis: Assume that P holds for some n (Strong induction: for all m with $k \leq m \leq n$)
- Induction step: Prove that $P(n+1)$ holds

Structure of a Proof by Induction

- Statement to prove: For example, for all $n \geq k P(n)$ is true

$$
\forall n \geq 0: \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

- Base case: Prove that $P(k)$ holds

$$
n=0: \sum_{i=0}^{0} i=0=\frac{0 \cdot(0+1)}{2} . \checkmark
$$

- Induction hypothesis: Assume that P holds for some n (Strong induction: for all m with $k \leq m \leq n$)
- Induction step: Prove that $P(n+1)$ holds
$\sum_{i=0}^{n+1} i$

Structure of a Proof by Induction

- Statement to prove: For example, for all $n \geq k P(n)$ is true

$$
\forall n \geq 0: \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

- Base case: Prove that $P(k)$ holds

$$
n=0: \sum_{i=0}^{0} i=0=\frac{0 \cdot(0+1)}{2} \cdot \checkmark
$$

- Induction hypothesis: Assume that P holds for some n (Strong induction: for all m with $k \leq m \leq n$)
- Induction step: Prove that $P(n+1)$ holds
$\sum_{i=0}^{n+1} i=n+1+\sum_{i=0}^{n} i$

Structure of a Proof by Induction

- Statement to prove: For example, for all $n \geq k P(n)$ is true

$$
\forall n \geq 0: \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

- Base case: Prove that $P(k)$ holds

$$
n=0: \sum_{i=0}^{0} i=0=\frac{0 \cdot(0+1)}{2} \cdot \checkmark
$$

- Induction hypothesis: Assume that P holds for some n (Strong induction: for all m with $k \leq m \leq n$)
- Induction step: Prove that $P(n+1)$ holds

$$
\sum_{i=0}^{n+1} i=n+1+\sum_{i=0}^{n} i=n+1+\frac{n(n+1)}{2}
$$

Structure of a Proof by Induction

- Statement to prove: For example, for all $n \geq k P(n)$ is true

$$
\forall n \geq 0: \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

- Base case: Prove that $P(k)$ holds

$$
n=0: \sum_{i=0}^{0} i=0=\frac{0 \cdot(0+1)}{2} . \checkmark
$$

- Induction hypothesis: Assume that P holds for some n (Strong induction: for all m with $k \leq m \leq n$)
- Induction step: Prove that $P(n+1)$ holds

$$
\sum_{i=0}^{n+1} i=n+1+\sum_{i=0}^{n} i=n+1+\frac{n(n+1)}{2}=\frac{(n+1)(n+2)}{2} .
$$

Structure of a Proof by Induction

- Statement to prove: For example, for all $n \geq k P(n)$ is true

$$
\forall n \geq 0: \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

- Base case: Prove that $P(k)$ holds

$$
n=0: \sum_{i=0}^{0} i=0=\frac{0 \cdot(0+1)}{2} . \checkmark
$$

- Induction hypothesis: Assume that P holds for some n (Strong induction: for all m with $k \leq m \leq n$)
- Induction step: Prove that $P(n+1)$ holds

$$
\sum_{i=0}^{n+1} i=n+1+\sum_{i=0}^{n} i=n+1+\frac{n(n+1)}{2}=\frac{(n+1)(n+2)}{2} . \checkmark
$$

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Proof. (by induction on n)

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Proof. (by induction on n)

- Base case. $(n=0)$

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Proof. (by induction on n)

- Base case. $(n=0)$

$$
\sum_{i=0}^{0} x^{i}=x^{0}=1
$$

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Proof. (by induction on n)

- Base case. $(n=0)$

$$
\sum_{i=0}^{0} x^{i}=x^{0}=1 \text { and } \frac{x^{n+1}-1}{x-1}=\frac{x-1}{x-1}=1
$$

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Proof. (by induction on n)

- Base case. $(n=0)$

$$
\sum_{i=0}^{0} x^{i}=x^{0}=1 \text { and } \frac{x^{n+1}-1}{x-1}=\frac{x-1}{x-1}=1 . \checkmark
$$

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Proof. (by induction on n)

- Base case. $(n=0)$

$$
\sum_{i=0}^{0} x^{i}=x^{0}=1 \text { and } \frac{x^{n+1}-1}{x-1}=\frac{x-1}{x-1}=1 . \checkmark
$$

- Induction Step.

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Proof. (by induction on n)

- Base case. $(n=0)$

$$
\sum_{i=0}^{0} x^{i}=x^{0}=1 \text { and } \frac{x^{n+1}-1}{x-1}=\frac{x-1}{x-1}=1 . \checkmark
$$

- Induction Step. Suppose the formula holds for n. We will prove that it also holds for $n+1$:

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Proof. (by induction on n)

- Base case. $(n=0)$

$$
\sum_{i=0}^{0} x^{i}=x^{0}=1 \text { and } \frac{x^{n+1}-1}{x-1}=\frac{x-1}{x-1}=1 . \checkmark
$$

- Induction Step. Suppose the formula holds for n. We will prove that it also holds for $n+1$:

$$
\sum_{i=0}^{n+1} x^{i}
$$

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Proof. (by induction on n)

- Base case. $(n=0)$

$$
\sum_{i=0}^{0} x^{i}=x^{0}=1 \text { and } \frac{x^{n+1}-1}{x-1}=\frac{x-1}{x-1}=1 . \checkmark
$$

- Induction Step. Suppose the formula holds for n. We will prove that it also holds for $n+1$:

$$
\sum_{i=0}^{n+1} x^{i}=x^{n+1}+\sum_{i=0}^{n} x^{i}
$$

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Proof. (by induction on n)

- Base case. $(n=0)$

$$
\sum_{i=0}^{0} x^{i}=x^{0}=1 \text { and } \frac{x^{n+1}-1}{x-1}=\frac{x-1}{x-1}=1 . \checkmark
$$

- Induction Step. Suppose the formula holds for n. We will prove that it also holds for $n+1$:

$$
\sum_{i=0}^{n+1} x^{i}=x^{n+1}+\sum_{i=0}^{n} x^{i}=x^{n+1}+\frac{x^{n+1}-1}{x-1}
$$

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Proof. (by induction on n)

- Base case. $(n=0)$

$$
\sum_{i=0}^{0} x^{i}=x^{0}=1 \text { and } \frac{x^{n+1}-1}{x-1}=\frac{x-1}{x-1}=1 . \checkmark
$$

- Induction Step. Suppose the formula holds for n. We will prove that it also holds for $n+1$:

$$
\begin{aligned}
\sum_{i=0}^{n+1} x^{i} & =x^{n+1}+\sum_{i=0}^{n} x^{i}=x^{n+1}+\frac{x^{n+1}-1}{x-1} \\
& =\frac{x^{n+1}(x-1)+x^{n+1}-1}{x-1}
\end{aligned}
$$

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Proof. (by induction on n)

- Base case. $(n=0)$

$$
\sum_{i=0}^{0} x^{i}=x^{0}=1 \text { and } \frac{x^{n+1}-1}{x-1}=\frac{x-1}{x-1}=1 . \checkmark
$$

- Induction Step. Suppose the formula holds for n. We will prove that it also holds for $n+1$:

$$
\begin{aligned}
\sum_{i=0}^{n+1} x^{i} & =x^{n+1}+\sum_{i=0}^{n} x^{i}=x^{n+1}+\frac{x^{n+1}-1}{x-1} \\
& =\frac{x^{n+1}(x-1)+x^{n+1}-1}{x-1}=\frac{x^{n+2}-1}{x-1}
\end{aligned}
$$

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Proof. (by induction on n)

- Base case. $(n=0)$

$$
\sum_{i=0}^{0} x^{i}=x^{0}=1 \text { and } \frac{x^{n+1}-1}{x-1}=\frac{x-1}{x-1}=1 . \checkmark
$$

- Induction Step. Suppose the formula holds for n. We will prove that it also holds for $n+1$:

$$
\begin{aligned}
\sum_{i=0}^{n+1} x^{i} & =x^{n+1}+\sum_{i=0}^{n} x^{i}=x^{n+1}+\frac{x^{n+1}-1}{x-1} \\
& =\frac{x^{n+1}(x-1)+x^{n+1}-1}{x-1}=\frac{x^{n+2}-1}{x-1}
\end{aligned}
$$

Spot the Flaw

Example: $a^{n}=1$, for every $a \neq 0$ and n nonnegative integer
(1) Base case $(n=0): a^{0}=1$
(2) Induction hypothesis: $a^{m}=1$, for every $0 \leq m \leq n$ (strong induction)
(3) Induction step:

$$
a^{n+1}=a^{2 n-(n-1)}=\frac{a^{2 n}}{a^{n-1}}=\frac{a^{n} \cdot a^{n}}{a^{n-1}}=\frac{1 \cdot 1}{1}=1 \ldots
$$

Spot the Flaw

Example: $a^{n}=1$, for every $a \neq 0$ and n nonnegative integer
(1) Base case $(n=0): a^{0}=1$
(2) Induction hypothesis: $a^{m}=1$, for every $0 \leq m \leq n$ (strong induction)
(3) Induction step:

$$
a^{n+1}=a^{2 n-(n-1)}=\frac{a^{2 n}}{a^{n-1}}=\frac{a^{n} \cdot a^{n}}{a^{n-1}}=\frac{1 \cdot 1}{1}=1 \ldots
$$

Problem: a^{1} is computed as $\frac{a^{0} a^{0}}{a^{-1}}$ and induction hypothesis does not holds for $n=-1$!

