Merge-sort COMS10017 - Algorithms 1

Dr Christian Konrad

- Input: An array A of n numbers
- **Output:** A reordering of A s.t. $A[0] \le A[1] \le \cdots \le A[n-1]$

- Input: An array A of n numbers
- **Output:** A reordering of A s.t. $A[0] \le A[1] \le \cdots \le A[n-1]$

Why is it important?

- Input: An array A of n numbers
- **Output:** A reordering of A s.t. $A[0] \le A[1] \le \cdots \le A[n-1]$

Why is it important?

• Practical relevance: Appears almost everywhere

- Input: An array A of n numbers
- **Output:** A reordering of A s.t. $A[0] \le A[1] \le \cdots \le A[n-1]$

Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques

- Input: An array A of n numbers
- **Output:** A reordering of A s.t. $A[0] \le A[1] \le \cdots \le A[n-1]$

Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques
- There is a non-trivial lower bound for sorting (rare!)

- Input: An array A of n numbers
- **Output:** A reordering of A s.t. $A[0] \le A[1] \le \cdots \le A[n-1]$

Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques
- There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

- Input: An array A of n numbers
- **Output:** A reordering of A s.t. $A[0] \le A[1] \le \cdots \le A[n-1]$

Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques
- There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

• Worst-case runtime $O(n^2)$

- Input: An array A of n numbers
- **Output:** A reordering of A s.t. $A[0] \le A[1] \le \cdots \le A[n-1]$

Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques
- There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

- Worst-case runtime $O(n^2)$
- Surely we can do better?!

Insertion sort in Practice on Worst-case Instances

A sorting algorithm is *in place* if at any moment at most O(1) array elements are stored outside the array

A sorting algorithm is *in place* if at any moment at most O(1) array elements are stored outside the array

Example: Insertion-sort is in place

A sorting algorithm is *in place* if at any moment at most O(1) array elements are stored outside the array

Example: Insertion-sort is in place

Definition (stability)

A sorting algorithm is *in place* if at any moment at most O(1) array elements are stored outside the array

Example: Insertion-sort is in place

Definition (stability)

A sorting algorithm is *stable* if any pair of equal numbers in the input array appear in the same order in the sorted array

A sorting algorithm is *in place* if at any moment at most O(1) array elements are stored outside the array

Example: Insertion-sort is in place

Definition (stability)

A sorting algorithm is *stable* if any pair of equal numbers in the input array appear in the same order in the sorted array

Example: Insertion-sort is stable

Sorting Complex Data

• In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record
- The **key** is the part of the record according to which the data is to be sorted

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record
- The **key** is the part of the record according to which the data is to be sorted
- Data different to the key is also referred to as satellite data

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record
- The **key** is the part of the record according to which the data is to be sorted
- Data different to the key is also referred to as satellite data

family name	first name	data of birth	role
Smith	Peter	02.10.1982	lecturer
Hills	Emma	05.05.1975	reader
Jones	Tom	03.02.1977	senior lecturer

Sorting Complex Data

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record
- The **key** is the part of the record according to which the data is to be sorted
- Data different to the key is also referred to as satellite data

family name	first name	data of birth	role
Smith	Peter	02.10.1982	lecturer
Hills	Emma	05.05.1975	reader
Jones	Tom	03.02.1977	senior lecturer

Observe: Stability makes more sense when sorting complex data as opposed to numbers

Merge Sort

• Suppose that left half and right half of array is sorted

- Suppose that left half and right half of array is sorted
- Then we can merge the two sorted halves to a sorted array in O(n) time:

Merge Operation

- Suppose that left half and right half of array is sorted
- Then we can merge the two sorted halves to a sorted array in O(n) time:

Merge Operation

• Copy left half of A to new array B

- Suppose that left half and right half of array is sorted
- Then we can merge the two sorted halves to a sorted array in O(n) time:

Merge Operation

- Copy left half of A to new array B
- Copy right half of A to new array C

- Suppose that left half and right half of array is sorted
- Then we can merge the two sorted halves to a sorted array in O(n) time:

Merge Operation

- Copy left half of A to new array B
- Copy right half of A to new array C
- Traverse *B* and *C* simultaneously from left to right and write the smallest element at the current positions to *A*

A 1 4 9 10 3 5 7 11

Analysis: Merge Operation

Merge Operation

- Input: An array A of integers of length n (n even) such that $A[0, \frac{n}{2} 1]$ and $A[\frac{n}{2}, n 1]$ are sorted
- Output: Sorted array A

- **Input:** An array A of integers of length n (n even) such that $A[0, \frac{n}{2} 1]$ and $A[\frac{n}{2}, n 1]$ are sorted
- Output: Sorted array A

Runtime Analysis:

- **Input:** An array A of integers of length n (n even) such that $A[0, \frac{n}{2} 1]$ and $A[\frac{n}{2}, n 1]$ are sorted
- Output: Sorted array A

Runtime Analysis:

• Copy left half of A to B: O(n) operations

- **Input:** An array A of integers of length n (n even) such that $A[0, \frac{n}{2} 1]$ and $A[\frac{n}{2}, n 1]$ are sorted
- Output: Sorted array A

Runtime Analysis:

- Copy left half of A to B: O(n) operations
- **2** Copy right half of A to C: O(n) operations

- **Input:** An array A of integers of length n (n even) such that $A[0, \frac{n}{2} 1]$ and $A[\frac{n}{2}, n 1]$ are sorted
- Output: Sorted array A

Runtime Analysis:

- Copy left half of A to B: O(n) operations
- **2** Copy right half of A to C: O(n) operations
- So Merge B and C and store in A: O(n) operations

- Input: An array A of integers of length n (n even) such that $A[0, \frac{n}{2} 1]$ and $A[\frac{n}{2}, n 1]$ are sorted
- Output: Sorted array A

Runtime Analysis:

- Copy left half of A to B: O(n) operations
- **2** Copy right half of A to C: O(n) operations
- So Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

- **Input:** An array A of integers of length n (n even) such that $A[0, \frac{n}{2} 1]$ and $A[\frac{n}{2}, n 1]$ are sorted
- Output: Sorted array A

Runtime Analysis:

- Copy left half of A to B: O(n) operations
- **2** Copy right half of A to C: O(n) operations
- So Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?

- **Input:** An array A of integers of length n (n even) such that $A[0, \frac{n}{2} 1]$ and $A[\frac{n}{2}, n 1]$ are sorted
- Output: Sorted array A

Runtime Analysis:

- Copy left half of A to B: O(n) operations
- **2** Copy right half of A to C: O(n) operations
- So Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?

Divide and Conquer!

```
Require: Array A of n numbers

if n = 1 then

return A

A[0, \lfloor \frac{n}{2} \rfloor] \leftarrow \text{MERGESORT}(A[0, \lfloor \frac{n}{2} \rfloor])

A[\lfloor \frac{n}{2} \rfloor + 1, n - 1] \leftarrow \text{MERGESORT}(A[\lfloor \frac{n}{2} \rfloor + 1, n - 1])

A \leftarrow \text{MERGE}(A)

return A
```

MergeSort

Require: Array *A* of *n* numbers **if** n = 1 **then return** *A* $A[0, \lfloor \frac{n}{2} \rfloor] \leftarrow \text{MERGESORT}(A[0, \lfloor \frac{n}{2} \rfloor])$ $A[\lfloor \frac{n}{2} \rfloor + 1, n - 1] \leftarrow \text{MERGESORT}(A[\lfloor \frac{n}{2} \rfloor + 1, n - 1])$ $A \leftarrow \text{MERGE}(A)$ **return** *A*

MergeSort

Structure of a Divide and Conquer Algorithm

```
Require: Array A of n numbers

if n = 1 then

return A

A[0, \lfloor \frac{n}{2} \rfloor] \leftarrow \text{MERGESORT}(A[0, \lfloor \frac{n}{2} \rfloor])

A[\lfloor \frac{n}{2} \rfloor + 1, n - 1] \leftarrow \text{MERGESORT}(A[\lfloor \frac{n}{2} \rfloor + 1, n - 1])

A \leftarrow \text{MERGE}(A)

return A
```

MergeSort

Structure of a Divide and Conquer Algorithm

• **Divide** the problem into a number of subproblems that are smaller instances of the same problem.

```
Require: Array A of n numbers

if n = 1 then

return A

A[0, \lfloor \frac{n}{2} \rfloor] \leftarrow \text{MERGESORT}(A[0, \lfloor \frac{n}{2} \rfloor])

A[\lfloor \frac{n}{2} \rfloor + 1, n - 1] \leftarrow \text{MERGESORT}(A[\lfloor \frac{n}{2} \rfloor + 1, n - 1])

A \leftarrow \text{MERGE}(A)

return A
```

MergeSort

Structure of a Divide and Conquer Algorithm

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- **Conquer** the subproblems by solving them recursively. If the subproblems are small enough, just solve them in a straightforward manner.

```
Require: Array A of n numbers

if n = 1 then

return A

A[0, \lfloor \frac{n}{2} \rfloor] \leftarrow \text{MERGESORT}(A[0, \lfloor \frac{n}{2} \rfloor])

A[\lfloor \frac{n}{2} \rfloor + 1, n - 1] \leftarrow \text{MERGESORT}(A[\lfloor \frac{n}{2} \rfloor + 1, n - 1])

A \leftarrow \text{MERGE}(A)

return A
```

MergeSort

Structure of a Divide and Conquer Algorithm

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- **Conquer** the subproblems by solving them recursively. If the subproblems are small enough, just solve them in a straightforward manner.
- **Combine** the solutions to the subproblems into the solution for the original problem.

Analyzing MergeSort: An Example

Analyzing MergeSort: An Example

Analyzing Merge Sort

Analysis Idea:

• We need to sum up the work spent in each node of the *recursion tree*

- We need to sum up the work spent in each node of the *recursion tree*
- The recursion tree in the example is a complete binary tree

- We need to sum up the work spent in each node of the *recursion tree*
- The recursion tree in the example is a *complete binary tree*

Definition: A tree is a *complete binary tree* if every node has either 2 or 0 children.

- We need to sum up the work spent in each node of the *recursion tree*
- The recursion tree in the example is a *complete binary tree*

Definition: A tree is a *complete binary tree* if every node has either 2 or 0 children.

Definition: A tree is a *binary tree* if every node has at most 2 children.

- We need to sum up the work spent in each node of the *recursion tree*
- The recursion tree in the example is a *complete binary tree*

Definition: A tree is a *complete binary tree* if every node has either 2 or 0 children.

Definition: A tree is a *binary tree* if every node has at most 2 children.

(we will talk about trees in much more detail later in this unit)

- We need to sum up the work spent in each node of the *recursion tree*
- The recursion tree in the example is a *complete binary tree*

Definition: A tree is a *complete binary tree* if every node has either 2 or 0 children.

Definition: A tree is a *binary tree* if every node has at most 2 children.

(we will talk about trees in much more detail later in this unit)

Questions:

- We need to sum up the work spent in each node of the *recursion tree*
- The recursion tree in the example is a *complete binary tree*

Definition: A tree is a *complete binary tree* if every node has either 2 or 0 children.

Definition: A tree is a *binary tree* if every node has at most 2 children.

(we will talk about trees in much more detail later in this unit)

Questions:

• How many levels?

- We need to sum up the work spent in each node of the *recursion tree*
- The recursion tree in the example is a *complete binary tree*

Definition: A tree is a *complete binary tree* if every node has either 2 or 0 children.

Definition: A tree is a *binary tree* if every node has at most 2 children.

(we will talk about trees in much more detail later in this unit)

Questions:

- How many levels?
- How many nodes per level?

- We need to sum up the work spent in each node of the *recursion tree*
- The recursion tree in the example is a *complete binary tree*

Definition: A tree is a *complete binary tree* if every node has either 2 or 0 children.

Definition: A tree is a *binary tree* if every node has at most 2 children.

(we will talk about trees in much more detail later in this unit)

Questions:

- How many levels?
- How many nodes per level?
- Time spent per node?

Number of Levels (2)

Level *i*:

Number of Levels (2)

Level i:

• 2^{*i*-1} nodes (at most)

Number of Levels (2)

Level i:

- 2^{*i*-1} nodes (at most)
- Array length in level *i* is $\lceil \frac{n}{2^{i-1}} \rceil$ (at most)
Level i:

- 2^{*i*-1} nodes (at most)
- Array length in level *i* is $\lceil \frac{n}{2^{i-1}} \rceil$ (at most)
- Runtime of merge operation for each node in level *i*: $O(\frac{n}{2^{i-1}})$

Level i:

- 2^{*i*-1} nodes (at most)
- Array length in level *i* is $\lceil \frac{n}{2^{i-1}} \rceil$ (at most)
- Runtime of merge operation for each node in level *i*: $O(\frac{n}{2^{i-1}})$

Number of Levels:

Level i:

- 2^{*i*-1} nodes (at most)
- Array length in level i is $\lceil \frac{n}{2^{i-1}} \rceil$ (at most)
- Runtime of merge operation for each node in level *i*: $O(\frac{n}{2^{i-1}})$

Number of Levels:

• Array length in last level / is 1:

Level i:

- 2^{*i*-1} nodes (at most)
- Array length in level i is $\lceil \frac{n}{2^{i-1}} \rceil$ (at most)
- Runtime of merge operation for each node in level *i*: $O(\frac{n}{2^{i-1}})$

Number of Levels:

• Array length in last level / is 1: $\lceil \frac{n}{2^{l-1}} \rceil = 1$

$$\frac{n}{2^{l-1}} \le 1$$

Level i:

- 2^{*i*-1} nodes (at most)
- Array length in level i is $\lceil \frac{n}{2^{i-1}} \rceil$ (at most)
- Runtime of merge operation for each node in level *i*: $O(\frac{n}{2^{i-1}})$

Number of Levels:

• Array length in last level / is 1: $\lceil \frac{n}{2^{l-1}} \rceil = 1$

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1}$$

Level i:

- 2^{*i*-1} nodes (at most)
- Array length in level i is $\lceil \frac{n}{2^{i-1}} \rceil$ (at most)
- Runtime of merge operation for each node in level *i*: $O(\frac{n}{2^{i-1}})$

Number of Levels:

• Array length in last level / is 1: $\lceil \frac{n}{2^{l-1}} \rceil = 1$

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

Level i:

- 2^{*i*-1} nodes (at most)
- Array length in level *i* is $\lceil \frac{n}{2^{i-1}} \rceil$ (at most)
- Runtime of merge operation for each node in level *i*: $O(\frac{n}{2^{i-1}})$

Number of Levels:

• Array length in last level / is 1: $\lceil \frac{n}{2^{l-1}} \rceil = 1$

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

• Array length in last but one level I - 1 is 2:

Level i:

- 2^{*i*-1} nodes (at most)
- Array length in level *i* is $\lceil \frac{n}{2^{i-1}} \rceil$ (at most)
- Runtime of merge operation for each node in level *i*: $O(\frac{n}{2^{i-1}})$

Number of Levels:

• Array length in last level / is 1: $\lceil \frac{n}{2^{l-1}} \rceil = 1$

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

$$\frac{n}{2^{l-2}} > 1$$

Level i:

- 2^{*i*-1} nodes (at most)
- Array length in level *i* is $\lceil \frac{n}{2^{i-1}} \rceil$ (at most)
- Runtime of merge operation for each node in level *i*: $O(\frac{n}{2^{i-1}})$

Number of Levels:

• Array length in last level / is 1: $\lceil \frac{n}{2^{l-1}} \rceil = 1$

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

$$\frac{n}{2^{l-2}} > 1 \Rightarrow n > 2^{l-2}$$

Level i:

- 2^{*i*-1} nodes (at most)
- Array length in level *i* is $\lceil \frac{n}{2^{i-1}} \rceil$ (at most)
- Runtime of merge operation for each node in level *i*: $O(\frac{n}{2^{i-1}})$

Number of Levels:

• Array length in last level / is 1: $\lceil \frac{n}{2^{l-1}} \rceil = 1$

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

$$\frac{n}{2^{l-2}} > 1 \Rightarrow n > 2^{l-2} \Rightarrow \log(n) + 2 > l$$

Level i:

- 2^{*i*-1} nodes (at most)
- Array length in level i is $\lceil \frac{n}{2^{i-1}} \rceil$ (at most)
- Runtime of merge operation for each node in level *i*: $O(\frac{n}{2^{i-1}})$

Number of Levels:

• Array length in last level / is 1: $\lceil \frac{n}{2^{l-1}} \rceil = 1$

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

$$\frac{n}{2^{l-2}} > 1 \Rightarrow n > 2^{l-2} \Rightarrow \log(n) + 2 > l$$
$$\log(n) + 1 \le l < \log(n) + 2$$

Level i:

- 2^{*i*-1} nodes (at most)
- Array length in level i is $\lceil \frac{n}{2^{i-1}} \rceil$ (at most)
- Runtime of merge operation for each node in level *i*: $O(\frac{n}{2^{i-1}})$

Number of Levels:

• Array length in last level / is 1: $\lceil \frac{n}{2^{l-1}} \rceil = 1$

$$\frac{n}{2^{l-1}} \le 1 \Rightarrow n \le 2^{l-1} \Rightarrow \log(n) + 1 \le l$$

• Array length in last but one level l-1 is 2: $\lceil \frac{n}{2^{l-2}} \rceil = 2$

$$\frac{n}{2^{l-2}} > 1 \Rightarrow n > 2^{l-2} \Rightarrow \log(n) + 2 > l$$

 $\log(n) + 1 \le l < \log(n) + 2$

Hence, $l = \lceil \log n \rceil + 1$.

Sum up Work:

- Levels: $I = \lceil \log n \rceil + 1$
- Nodes on level *i*: at most 2ⁱ⁻¹
- Array length in level *i*: at most $\lceil \frac{n}{2^{i-1}} \rceil$

Sum up Work:

- Levels: $I = \lceil \log n \rceil + 1$
- Nodes on level *i*: at most 2ⁱ⁻¹
- Array length in level *i*: at most $\lceil \frac{n}{2^{i-1}} \rceil$

Sum up Work:

- Levels: $I = \lceil \log n \rceil + 1$
- Nodes on level i: at most 2ⁱ⁻¹
- Array length in level *i*: at most ∫ n/(2ⁱ⁻¹)

$$\sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\lceil \frac{n}{2^{i-1}} \rceil \right)$$

Sum up Work:

- Levels: $I = \lceil \log n \rceil + 1$
- Nodes on level i: at most 2ⁱ⁻¹
- Array length in level *i*: at most ∫ n/(2ⁱ⁻¹)

$$\sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\lceil \frac{n}{2^{i-1}} \rceil \right) = \sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\frac{n}{2^{i-1}} \right)$$

Sum up Work:

- Levels: $I = \lceil \log n \rceil + 1$
- Nodes on level i: at most 2ⁱ⁻¹
- Array length in level *i*: at most ∫ n/(2ⁱ⁻¹)

$$\sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\lceil \frac{n}{2^{i-1}} \rceil \right) = \sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\frac{n}{2^{i-1}} \right)$$
$$= \sum_{i=1}^{\lceil \log n \rceil + 1} O(n)$$

Sum up Work:

- Levels: $I = \lceil \log n \rceil + 1$
- Nodes on level i: at most 2ⁱ⁻¹
- Array length in level *i*: at most ∫ n/(2ⁱ⁻¹)

$$\sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\lceil \frac{n}{2^{i-1}} \rceil \right) = \sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\frac{n}{2^{i-1}} \right)$$
$$= \sum_{i=1}^{\lceil \log n \rceil + 1} O(n) = \left(\lceil \log n \rceil + 1 \right) O(n)$$

Sum up Work:

- Levels: $I = \lceil \log n \rceil + 1$
- Nodes on level i: at most 2ⁱ⁻¹
- Array length in level *i*: at most ∫ n/(2ⁱ⁻¹)

8 15 7 15 7

$$\sum_{i=1}^{\log n \rceil + 1} 2^{i-1} O\left(\lceil \frac{n}{2^{i-1}} \rceil \right) = \sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\frac{n}{2^{i-1}} \right)$$
$$= \sum_{i=1}^{\lceil \log n \rceil + 1} O(n) = (\lceil \log n \rceil + 1) O(n) = O(n \log n) .$$

Merge sort in Practice on Worst-case Instances

Merge-sort

Stability and In Place Property?

Stability and In Place Property?

• Merge sort is stable

Stability and In Place Property?

- Merge sort is stable
- Merge sort does not sort in place

Let $\boldsymbol{\mathsf{A}}$ be a divide and conquer algorithm with the following properties:

Let $\boldsymbol{\mathsf{A}}$ be a divide and conquer algorithm with the following properties:

() A performs two recursive calls on input sizes at most n/2

Let ${\boldsymbol{\mathsf{A}}}$ be a divide and conquer algorithm with the following properties:

- **()** A performs two recursive calls on input sizes at most n/2
- **2** The conquer operation in **A** takes O(n) time

Let **A** be a divide and conquer algorithm with the following properties:

- **()** A performs two recursive calls on input sizes at most n/2
- **2** The conquer operation in **A** takes O(n) time

Then:

Let **A** be a divide and conquer algorithm with the following properties:

- **()** A performs two recursive calls on input sizes at most n/2
- 2 The conquer operation in **A** takes O(n) time

Then:

A has a runtime of $O(n \log n)$.