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Definition of the Sorting Problem

Sorting Problem
@ Input: An array A of n numbers
@ Output: A reordering of As.t. A[0] < A[1] <--- < A[n—1]

Why is it important?
@ Practical relevance: Appears almost everywhere
@ Fundamental algorithmic problem, rich set of techniques

@ There is a non-trivial lower bound for sorting (rare!)

Insertion Sort
e Worst-case runtime O(n?)

@ Surely we can do better?!
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Insertion sort in Practice on Worst-case Instances
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n | 46929 | 102428 | 364178 | 1014570
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Example: Insertion-sort is in place

Definition (stability)
A sorting algorithm is stable if any pair of equal numbers in the
input array appear in the same order in the sorted array
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Records, Keys, and Satellite Data

Sorting Complex Data

@ In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

@ A data item is often also called a record

@ The key is the part of the record according to which the data
is to be sorted

o Data different to the key is also referred to as satellite data

family name | first name | data of birth | role

Smith Peter 02.10.1982 lecturer
Hills Emma 05.05.1975 reader
Jones Tom 03.02.1977 senior lecturer

Observe: Stability makes more sense when sorting complex data
as opposed to numbers
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Key Idea:
@ Suppose that left half and right half of array is sorted
@ Then we can merge the two sorted halves to a sorted array in

O(n) time:

Merge Operation
@ Copy left half of A to new array B
@ Copy right half of A to new array C

@ Traverse B and C simultaneously from left to right and write
the smallest element at the current positions to A
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Merge Operation

@ Input: An array A of integers of length n (n even) such that
A0, 5 — 1] and A[7, n — 1] are sorted
@ Output: Sorted array A

Runtime Analysis:
@ Copy left half of A to B: O(n) operations
@ Copy right half of A to C: O(n) operations
© Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case
How can we establish that left and right halves are sorted?

Divide and Conquer!
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if n =1 then
return A
A0, | 5]] <= MERGESORT(A[0, | 5 |])
All5]+1,n—1] < MERGESORT(A[| 5 |+1, n—1])
A + MERGE(A)
return A

MERGESORT
Structure of a Divide and Conquer Algorithm

e Divide the problem into a number of subproblems that are
smaller instances of the same problem.

e Conquer the subproblems by solving them recursively. If the
subproblems are small enough, just solve them in a
straightforward manner.

@ Combine the solutions to the subproblems into the solution
for the original problem.
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Analyzing Merge Sort

Analysis ldea:

@ We need to sum up the work spent in each node of the
recursion tree

@ The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.
(we will talk about trees in much more detail later in this unit)

Questions:
@ How many levels?
@ How many nodes per level?

@ Time spent per node?
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Runtime of Merge Sort

Sum up Work:
o Levels: [2[=o]7]=]a]e]o]7]
I =1[logn] +1
@ Nodes on level i: [12]s[7]2]

at most 211

o Array length in level i:

3 R E2 EY B N EY B I K
. dndbdndd
. 2]

Worst-case Runtime:

[log n]+1 - " [log n]+1 » n
; 2" O((zi—lw - Z; 2" O(zi—1>
[log n]+1
Z O (n) = ([logn] +1) O(n) = O(nlogn) .
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Merge sort in Practice on Worst-case Instances

2 T T

secs
1.5 -
1+
0.5
° 0 1e-‘l-06 2e-‘+-06 3e-‘i-06 4e-‘i-06 5e-‘l-06 6e-‘|-06 7e-‘i-06 8e-‘i-06 9e-‘i-06 le+07
n | 46929 | 102428 | 364178 | 1014570
secs | 1.03084 | 4.81622 | 61.2737 | 497.879 (Insertion-sort)
secs | 0.007157 | 0.015802 | 0.0645791 | 0.169165 (Merge-sort)
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Stability and In Place Property?

Stability and In Place Property?
@ Merge sort is stable

@ Merge sort does not sort in place
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Generalizing the Analysis

Divide and Conquer Algorithm:
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Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

© A performs two recursive calls on input sizes at most n/2
@ The conquer operation in A takes O(n) time
Then:

A has a runtime of O(nlog n) ‘
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