
Merge-sort
COMS10017 - Algorithms 1

Dr Christian Konrad

Dr Christian Konrad Merge-sort 1 / 17

Definition of the Sorting Problem

Sorting Problem

Input: An array A of n numbers

Output: A reordering of A s.t. A[0] ≤ A[1] ≤ · · · ≤ A[n − 1]

Why is it important?

Practical relevance: Appears almost everywhere

Fundamental algorithmic problem, rich set of techniques

There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

Worst-case runtime O(n2)

Surely we can do better?!

Dr Christian Konrad Merge-sort 2 / 17

Definition of the Sorting Problem

Sorting Problem

Input: An array A of n numbers

Output: A reordering of A s.t. A[0] ≤ A[1] ≤ · · · ≤ A[n − 1]

Why is it important?

Practical relevance: Appears almost everywhere

Fundamental algorithmic problem, rich set of techniques

There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

Worst-case runtime O(n2)

Surely we can do better?!

Dr Christian Konrad Merge-sort 2 / 17

Definition of the Sorting Problem

Sorting Problem

Input: An array A of n numbers

Output: A reordering of A s.t. A[0] ≤ A[1] ≤ · · · ≤ A[n − 1]

Why is it important?

Practical relevance: Appears almost everywhere

Fundamental algorithmic problem, rich set of techniques

There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

Worst-case runtime O(n2)

Surely we can do better?!

Dr Christian Konrad Merge-sort 2 / 17

Definition of the Sorting Problem

Sorting Problem

Input: An array A of n numbers

Output: A reordering of A s.t. A[0] ≤ A[1] ≤ · · · ≤ A[n − 1]

Why is it important?

Practical relevance: Appears almost everywhere

Fundamental algorithmic problem, rich set of techniques

There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

Worst-case runtime O(n2)

Surely we can do better?!

Dr Christian Konrad Merge-sort 2 / 17

Definition of the Sorting Problem

Sorting Problem

Input: An array A of n numbers

Output: A reordering of A s.t. A[0] ≤ A[1] ≤ · · · ≤ A[n − 1]

Why is it important?

Practical relevance: Appears almost everywhere

Fundamental algorithmic problem, rich set of techniques

There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

Worst-case runtime O(n2)

Surely we can do better?!

Dr Christian Konrad Merge-sort 2 / 17

Definition of the Sorting Problem

Sorting Problem

Input: An array A of n numbers

Output: A reordering of A s.t. A[0] ≤ A[1] ≤ · · · ≤ A[n − 1]

Why is it important?

Practical relevance: Appears almost everywhere

Fundamental algorithmic problem, rich set of techniques

There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

Worst-case runtime O(n2)

Surely we can do better?!

Dr Christian Konrad Merge-sort 2 / 17

Definition of the Sorting Problem

Sorting Problem

Input: An array A of n numbers

Output: A reordering of A s.t. A[0] ≤ A[1] ≤ · · · ≤ A[n − 1]

Why is it important?

Practical relevance: Appears almost everywhere

Fundamental algorithmic problem, rich set of techniques

There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

Worst-case runtime O(n2)

Surely we can do better?!

Dr Christian Konrad Merge-sort 2 / 17

Definition of the Sorting Problem

Sorting Problem

Input: An array A of n numbers

Output: A reordering of A s.t. A[0] ≤ A[1] ≤ · · · ≤ A[n − 1]

Why is it important?

Practical relevance: Appears almost everywhere

Fundamental algorithmic problem, rich set of techniques

There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

Worst-case runtime O(n2)

Surely we can do better?!

Dr Christian Konrad Merge-sort 2 / 17

Insertion sort in Practice on Worst-case Instances

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06

secs

n 46929 102428 364178 1014570

secs 1.03084 4.81622 61.2737 497.879

Dr Christian Konrad Merge-sort 3 / 17

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most O(1)
array elements are stored outside the array

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

O(1)

Example: Insertion-sort is in place

Definition (stability)
A sorting algorithm is stable if any pair of equal numbers in the
input array appear in the same order in the sorted array

Example: Insertion-sort is stable

Dr Christian Konrad Merge-sort 4 / 17

Properties of a Sorting Algorithm

Definition (in place)

A sorting algorithm is in place if at any moment at most O(1)
array elements are stored outside the array

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

O(1)

Example: Insertion-sort is in place

Definition (stability)
A sorting algorithm is stable if any pair of equal numbers in the
input array appear in the same order in the sorted array

Example: Insertion-sort is stable

Dr Christian Konrad Merge-sort 4 / 17

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most O(1)
array elements are stored outside the array

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

O(1)

Example: Insertion-sort is in place

Definition (stability)
A sorting algorithm is stable if any pair of equal numbers in the
input array appear in the same order in the sorted array

Example: Insertion-sort is stable

Dr Christian Konrad Merge-sort 4 / 17

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most O(1)
array elements are stored outside the array

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

O(1)

Example: Insertion-sort is in place

Definition (stability)
A sorting algorithm is stable if any pair of equal numbers in the
input array appear in the same order in the sorted array

Example: Insertion-sort is stable

Dr Christian Konrad Merge-sort 4 / 17

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most O(1)
array elements are stored outside the array

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

O(1)

Example: Insertion-sort is in place

Definition (stability)

A sorting algorithm is stable if any pair of equal numbers in the
input array appear in the same order in the sorted array

Example: Insertion-sort is stable

Dr Christian Konrad Merge-sort 4 / 17

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most O(1)
array elements are stored outside the array

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

O(1)

Example: Insertion-sort is in place

Definition (stability)
A sorting algorithm is stable if any pair of equal numbers in the
input array appear in the same order in the sorted array

Example: Insertion-sort is stable

Dr Christian Konrad Merge-sort 4 / 17

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most O(1)
array elements are stored outside the array

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

O(1)

Example: Insertion-sort is in place

Definition (stability)
A sorting algorithm is stable if any pair of equal numbers in the
input array appear in the same order in the sorted array

Example: Insertion-sort is stable

Dr Christian Konrad Merge-sort 4 / 17

Records, Keys, and Satellite Data

Sorting Complex Data

In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

A data item is often also called a record

The key is the part of the record according to which the data
is to be sorted

Data different to the key is also referred to as satellite data

family name first name data of birth role

Smith Peter 02.10.1982 lecturer
Hills Emma 05.05.1975 reader
Jones Tom 03.02.1977 senior lecturer
. . .

Observe: Stability makes more sense when sorting complex data
as opposed to numbers

Dr Christian Konrad Merge-sort 5 / 17

Records, Keys, and Satellite Data

Sorting Complex Data

In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

A data item is often also called a record

The key is the part of the record according to which the data
is to be sorted

Data different to the key is also referred to as satellite data

family name first name data of birth role

Smith Peter 02.10.1982 lecturer
Hills Emma 05.05.1975 reader
Jones Tom 03.02.1977 senior lecturer
. . .

Observe: Stability makes more sense when sorting complex data
as opposed to numbers

Dr Christian Konrad Merge-sort 5 / 17

Records, Keys, and Satellite Data

Sorting Complex Data

In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

A data item is often also called a record

The key is the part of the record according to which the data
is to be sorted

Data different to the key is also referred to as satellite data

family name first name data of birth role

Smith Peter 02.10.1982 lecturer
Hills Emma 05.05.1975 reader
Jones Tom 03.02.1977 senior lecturer
. . .

Observe: Stability makes more sense when sorting complex data
as opposed to numbers

Dr Christian Konrad Merge-sort 5 / 17

Records, Keys, and Satellite Data

Sorting Complex Data

In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

A data item is often also called a record

The key is the part of the record according to which the data
is to be sorted

Data different to the key is also referred to as satellite data

family name first name data of birth role

Smith Peter 02.10.1982 lecturer
Hills Emma 05.05.1975 reader
Jones Tom 03.02.1977 senior lecturer
. . .

Observe: Stability makes more sense when sorting complex data
as opposed to numbers

Dr Christian Konrad Merge-sort 5 / 17

Records, Keys, and Satellite Data

Sorting Complex Data

In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

A data item is often also called a record

The key is the part of the record according to which the data
is to be sorted

Data different to the key is also referred to as satellite data

family name first name data of birth role

Smith Peter 02.10.1982 lecturer
Hills Emma 05.05.1975 reader
Jones Tom 03.02.1977 senior lecturer
. . .

Observe: Stability makes more sense when sorting complex data
as opposed to numbers

Dr Christian Konrad Merge-sort 5 / 17

Records, Keys, and Satellite Data

Sorting Complex Data

In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

A data item is often also called a record

The key is the part of the record according to which the data
is to be sorted

Data different to the key is also referred to as satellite data

family name first name data of birth role

Smith Peter 02.10.1982 lecturer
Hills Emma 05.05.1975 reader
Jones Tom 03.02.1977 senior lecturer
. . .

Observe: Stability makes more sense when sorting complex data
as opposed to numbers

Dr Christian Konrad Merge-sort 5 / 17

Records, Keys, and Satellite Data

Sorting Complex Data

In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

A data item is often also called a record

The key is the part of the record according to which the data
is to be sorted

Data different to the key is also referred to as satellite data

family name first name data of birth role

Smith Peter 02.10.1982 lecturer
Hills Emma 05.05.1975 reader
Jones Tom 03.02.1977 senior lecturer
. . .

Observe: Stability makes more sense when sorting complex data
as opposed to numbers

Dr Christian Konrad Merge-sort 5 / 17

Merge Sort

Key Idea:

Suppose that left half and right half of array is sorted

Then we can merge the two sorted halves to a sorted array in
O(n) time:

Merge Operation

Copy left half of A to new array B

Copy right half of A to new array C

Traverse B and C simultaneously from left to right and write
the smallest element at the current positions to A

Dr Christian Konrad Merge-sort 6 / 17

Merge Sort

Key Idea:

Suppose that left half and right half of array is sorted

Then we can merge the two sorted halves to a sorted array in
O(n) time:

Merge Operation

Copy left half of A to new array B

Copy right half of A to new array C

Traverse B and C simultaneously from left to right and write
the smallest element at the current positions to A

Dr Christian Konrad Merge-sort 6 / 17

Merge Sort

Key Idea:

Suppose that left half and right half of array is sorted

Then we can merge the two sorted halves to a sorted array in
O(n) time:

Merge Operation

Copy left half of A to new array B

Copy right half of A to new array C

Traverse B and C simultaneously from left to right and write
the smallest element at the current positions to A

Dr Christian Konrad Merge-sort 6 / 17

Merge Sort

Key Idea:

Suppose that left half and right half of array is sorted

Then we can merge the two sorted halves to a sorted array in
O(n) time:

Merge Operation

Copy left half of A to new array B

Copy right half of A to new array C

Traverse B and C simultaneously from left to right and write
the smallest element at the current positions to A

Dr Christian Konrad Merge-sort 6 / 17

Merge Sort

Key Idea:

Suppose that left half and right half of array is sorted

Then we can merge the two sorted halves to a sorted array in
O(n) time:

Merge Operation

Copy left half of A to new array B

Copy right half of A to new array C

Traverse B and C simultaneously from left to right and write
the smallest element at the current positions to A

Dr Christian Konrad Merge-sort 6 / 17

Merge Sort

Key Idea:

Suppose that left half and right half of array is sorted

Then we can merge the two sorted halves to a sorted array in
O(n) time:

Merge Operation

Copy left half of A to new array B

Copy right half of A to new array C

Traverse B and C simultaneously from left to right and write
the smallest element at the current positions to A

Dr Christian Konrad Merge-sort 6 / 17

Merge Sort

Key Idea:

Suppose that left half and right half of array is sorted

Then we can merge the two sorted halves to a sorted array in
O(n) time:

Merge Operation

Copy left half of A to new array B

Copy right half of A to new array C

Traverse B and C simultaneously from left to right and write
the smallest element at the current positions to A

Dr Christian Konrad Merge-sort 6 / 17

Example: Merge Operation

1 4 9 10 3 5 7 11A

Dr Christian Konrad Merge-sort 7 / 17

Example: Merge Operation

1 4 9 10 3 5 7 11A

1 4 9 10B

3 5 7 11C

Dr Christian Konrad Merge-sort 7 / 17

Example: Merge Operation

1 4 9 10 3 5 7 11A

1 4 9 10B

3 5 7 11C

Dr Christian Konrad Merge-sort 7 / 17

Example: Merge Operation

1 4 9 10 3 5 7 11A

1 4 9 10B

3 5 7 11C

Dr Christian Konrad Merge-sort 7 / 17

Example: Merge Operation

1 4 9 10 3 5 7 11A

1 4 9 10B

3 5 7 11C

Dr Christian Konrad Merge-sort 7 / 17

Example: Merge Operation

1 3 9 10 3 5 7 11A

1 4 9 10B

3 5 7 11C

Dr Christian Konrad Merge-sort 7 / 17

Example: Merge Operation

1 3 4 10 3 5 7 11A

1 4 9 10B

3 5 7 11C

Dr Christian Konrad Merge-sort 7 / 17

Example: Merge Operation

1 3 4 5 3 5 7 11A

1 4 9 10B

3 5 7 11C

Dr Christian Konrad Merge-sort 7 / 17

Example: Merge Operation

1 3 4 5 7 5 7 11A

1 4 9 10B

3 5 7 11C

Dr Christian Konrad Merge-sort 7 / 17

Example: Merge Operation

1 3 4 5 7 9 10 11A

1 4 9 10B

3 5 7 11C

Dr Christian Konrad Merge-sort 7 / 17

Analysis: Merge Operation

Merge Operation

Input: An array A of integers of length n (n even) such that
A[0, n2 − 1] and A[n2 , n − 1] are sorted

Output: Sorted array A

Runtime Analysis:

1 Copy left half of A to B: O(n) operations

2 Copy right half of A to C : O(n) operations

3 Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?

Divide and Conquer!

Dr Christian Konrad Merge-sort 8 / 17

Analysis: Merge Operation

Merge Operation

Input: An array A of integers of length n (n even) such that
A[0, n2 − 1] and A[n2 , n − 1] are sorted

Output: Sorted array A

Runtime Analysis:

1 Copy left half of A to B: O(n) operations

2 Copy right half of A to C : O(n) operations

3 Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?

Divide and Conquer!

Dr Christian Konrad Merge-sort 8 / 17

Analysis: Merge Operation

Merge Operation

Input: An array A of integers of length n (n even) such that
A[0, n2 − 1] and A[n2 , n − 1] are sorted

Output: Sorted array A

Runtime Analysis:

1 Copy left half of A to B: O(n) operations

2 Copy right half of A to C : O(n) operations

3 Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?

Divide and Conquer!

Dr Christian Konrad Merge-sort 8 / 17

Analysis: Merge Operation

Merge Operation

Input: An array A of integers of length n (n even) such that
A[0, n2 − 1] and A[n2 , n − 1] are sorted

Output: Sorted array A

Runtime Analysis:

1 Copy left half of A to B: O(n) operations

2 Copy right half of A to C : O(n) operations

3 Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?

Divide and Conquer!

Dr Christian Konrad Merge-sort 8 / 17

Analysis: Merge Operation

Merge Operation

Input: An array A of integers of length n (n even) such that
A[0, n2 − 1] and A[n2 , n − 1] are sorted

Output: Sorted array A

Runtime Analysis:

1 Copy left half of A to B: O(n) operations

2 Copy right half of A to C : O(n) operations

3 Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?

Divide and Conquer!

Dr Christian Konrad Merge-sort 8 / 17

Analysis: Merge Operation

Merge Operation

Input: An array A of integers of length n (n even) such that
A[0, n2 − 1] and A[n2 , n − 1] are sorted

Output: Sorted array A

Runtime Analysis:

1 Copy left half of A to B: O(n) operations

2 Copy right half of A to C : O(n) operations

3 Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?

Divide and Conquer!

Dr Christian Konrad Merge-sort 8 / 17

Analysis: Merge Operation

Merge Operation

Input: An array A of integers of length n (n even) such that
A[0, n2 − 1] and A[n2 , n − 1] are sorted

Output: Sorted array A

Runtime Analysis:

1 Copy left half of A to B: O(n) operations

2 Copy right half of A to C : O(n) operations

3 Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?

Divide and Conquer!

Dr Christian Konrad Merge-sort 8 / 17

Analysis: Merge Operation

Merge Operation

Input: An array A of integers of length n (n even) such that
A[0, n2 − 1] and A[n2 , n − 1] are sorted

Output: Sorted array A

Runtime Analysis:

1 Copy left half of A to B: O(n) operations

2 Copy right half of A to C : O(n) operations

3 Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?

Divide and Conquer!

Dr Christian Konrad Merge-sort 8 / 17

Analysis: Merge Operation

Merge Operation

Input: An array A of integers of length n (n even) such that
A[0, n2 − 1] and A[n2 , n − 1] are sorted

Output: Sorted array A

Runtime Analysis:

1 Copy left half of A to B: O(n) operations

2 Copy right half of A to C : O(n) operations

3 Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?

Divide and Conquer!

Dr Christian Konrad Merge-sort 8 / 17

Merge Sort: A Divide and Conquer Algorithm

Require: Array A of n numbers
if n = 1 then

return A
A[0, ⌊ n

2
⌋]←MergeSort(A[0, ⌊ n

2
⌋])

A[⌊ n
2
⌋+1, n−1]←MergeSort(A[⌊ n

2
⌋+1, n−1])

A←Merge(A)
return A

MergeSort

Structure of a Divide and Conquer Algorithm

Divide the problem into a number of subproblems that are
smaller instances of the same problem.

Conquer the subproblems by solving them recursively. If the
subproblems are small enough, just solve them in a
straightforward manner.

Combine the solutions to the subproblems into the solution
for the original problem.

Dr Christian Konrad Merge-sort 9 / 17

Merge Sort: A Divide and Conquer Algorithm

Require: Array A of n numbers
if n = 1 then

return A
A[0, ⌊ n

2
⌋]←MergeSort(A[0, ⌊ n

2
⌋])

A[⌊ n
2
⌋+1, n−1]←MergeSort(A[⌊ n

2
⌋+1, n−1])

A←Merge(A)
return A

MergeSort

Structure of a Divide and Conquer Algorithm

Divide the problem into a number of subproblems that are
smaller instances of the same problem.

Conquer the subproblems by solving them recursively. If the
subproblems are small enough, just solve them in a
straightforward manner.

Combine the solutions to the subproblems into the solution
for the original problem.

Dr Christian Konrad Merge-sort 9 / 17

Merge Sort: A Divide and Conquer Algorithm

Require: Array A of n numbers
if n = 1 then

return A
A[0, ⌊ n

2
⌋]←MergeSort(A[0, ⌊ n

2
⌋])

A[⌊ n
2
⌋+1, n−1]←MergeSort(A[⌊ n

2
⌋+1, n−1])

A←Merge(A)
return A

MergeSort

Structure of a Divide and Conquer Algorithm

Divide the problem into a number of subproblems that are
smaller instances of the same problem.

Conquer the subproblems by solving them recursively. If the
subproblems are small enough, just solve them in a
straightforward manner.

Combine the solutions to the subproblems into the solution
for the original problem.

Dr Christian Konrad Merge-sort 9 / 17

Merge Sort: A Divide and Conquer Algorithm

Require: Array A of n numbers
if n = 1 then

return A
A[0, ⌊ n

2
⌋]←MergeSort(A[0, ⌊ n

2
⌋])

A[⌊ n
2
⌋+1, n−1]←MergeSort(A[⌊ n

2
⌋+1, n−1])

A←Merge(A)
return A

MergeSort

Structure of a Divide and Conquer Algorithm

Divide the problem into a number of subproblems that are
smaller instances of the same problem.

Conquer the subproblems by solving them recursively. If the
subproblems are small enough, just solve them in a
straightforward manner.

Combine the solutions to the subproblems into the solution
for the original problem.

Dr Christian Konrad Merge-sort 9 / 17

Merge Sort: A Divide and Conquer Algorithm

Require: Array A of n numbers
if n = 1 then

return A
A[0, ⌊ n

2
⌋]←MergeSort(A[0, ⌊ n

2
⌋])

A[⌊ n
2
⌋+1, n−1]←MergeSort(A[⌊ n

2
⌋+1, n−1])

A←Merge(A)
return A

MergeSort

Structure of a Divide and Conquer Algorithm

Divide the problem into a number of subproblems that are
smaller instances of the same problem.

Conquer the subproblems by solving them recursively. If the
subproblems are small enough, just solve them in a
straightforward manner.

Combine the solutions to the subproblems into the solution
for the original problem.

Dr Christian Konrad Merge-sort 9 / 17

Merge Sort: A Divide and Conquer Algorithm

Require: Array A of n numbers
if n = 1 then

return A
A[0, ⌊ n

2
⌋]←MergeSort(A[0, ⌊ n

2
⌋])

A[⌊ n
2
⌋+1, n−1]←MergeSort(A[⌊ n

2
⌋+1, n−1])

A←Merge(A)
return A

MergeSort

Structure of a Divide and Conquer Algorithm

Divide the problem into a number of subproblems that are
smaller instances of the same problem.

Conquer the subproblems by solving them recursively. If the
subproblems are small enough, just solve them in a
straightforward manner.

Combine the solutions to the subproblems into the solution
for the original problem.

Dr Christian Konrad Merge-sort 9 / 17

Analyzing MergeSort: An Example

Dr Christian Konrad Merge-sort 10 / 17

Analyzing MergeSort: An Example

Dr Christian Konrad Merge-sort 10 / 17

Analyzing Merge Sort

Analysis Idea:

We need to sum up the work spent in each node of the
recursion tree

The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.

(we will talk about trees in much more detail later in this unit)

Questions:

How many levels?

How many nodes per level?

Time spent per node?

Dr Christian Konrad Merge-sort 11 / 17

Analyzing Merge Sort

Analysis Idea:

We need to sum up the work spent in each node of the
recursion tree

The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.

(we will talk about trees in much more detail later in this unit)

Questions:

How many levels?

How many nodes per level?

Time spent per node?

Dr Christian Konrad Merge-sort 11 / 17

Analyzing Merge Sort

Analysis Idea:

We need to sum up the work spent in each node of the
recursion tree

The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.

(we will talk about trees in much more detail later in this unit)

Questions:

How many levels?

How many nodes per level?

Time spent per node?

Dr Christian Konrad Merge-sort 11 / 17

Analyzing Merge Sort

Analysis Idea:

We need to sum up the work spent in each node of the
recursion tree

The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.

(we will talk about trees in much more detail later in this unit)

Questions:

How many levels?

How many nodes per level?

Time spent per node?

Dr Christian Konrad Merge-sort 11 / 17

Analyzing Merge Sort

Analysis Idea:

We need to sum up the work spent in each node of the
recursion tree

The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.

(we will talk about trees in much more detail later in this unit)

Questions:

How many levels?

How many nodes per level?

Time spent per node?

Dr Christian Konrad Merge-sort 11 / 17

Analyzing Merge Sort

Analysis Idea:

We need to sum up the work spent in each node of the
recursion tree

The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.

(we will talk about trees in much more detail later in this unit)

Questions:

How many levels?

How many nodes per level?

Time spent per node?

Dr Christian Konrad Merge-sort 11 / 17

Analyzing Merge Sort

Analysis Idea:

We need to sum up the work spent in each node of the
recursion tree

The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.

(we will talk about trees in much more detail later in this unit)

Questions:

How many levels?

How many nodes per level?

Time spent per node?

Dr Christian Konrad Merge-sort 11 / 17

Analyzing Merge Sort

Analysis Idea:

We need to sum up the work spent in each node of the
recursion tree

The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.

(we will talk about trees in much more detail later in this unit)

Questions:

How many levels?

How many nodes per level?

Time spent per node?

Dr Christian Konrad Merge-sort 11 / 17

Analyzing Merge Sort

Analysis Idea:

We need to sum up the work spent in each node of the
recursion tree

The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.

(we will talk about trees in much more detail later in this unit)

Questions:

How many levels?

How many nodes per level?

Time spent per node?

Dr Christian Konrad Merge-sort 11 / 17

Analyzing Merge Sort

Analysis Idea:

We need to sum up the work spent in each node of the
recursion tree

The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.

(we will talk about trees in much more detail later in this unit)

Questions:

How many levels?

How many nodes per level?

Time spent per node?

Dr Christian Konrad Merge-sort 11 / 17

Number of Levels

Dr Christian Konrad Merge-sort 12 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: ⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1 ⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: ⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1 ⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .

Dr Christian Konrad Merge-sort 13 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: ⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1 ⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: ⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1 ⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .

Dr Christian Konrad Merge-sort 13 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: ⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1 ⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: ⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1 ⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .

Dr Christian Konrad Merge-sort 13 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: ⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1 ⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: ⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1 ⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .

Dr Christian Konrad Merge-sort 13 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: ⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1 ⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: ⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1 ⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .

Dr Christian Konrad Merge-sort 13 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1:

⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1 ⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: ⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1 ⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .

Dr Christian Konrad Merge-sort 13 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: ⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1

⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: ⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1 ⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .

Dr Christian Konrad Merge-sort 13 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: ⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1 ⇒ n ≤ 2l−1

⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: ⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1 ⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .

Dr Christian Konrad Merge-sort 13 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: ⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1 ⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: ⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1 ⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .

Dr Christian Konrad Merge-sort 13 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: ⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1 ⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2:

⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1 ⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .

Dr Christian Konrad Merge-sort 13 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: ⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1 ⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: ⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1

⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .

Dr Christian Konrad Merge-sort 13 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: ⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1 ⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: ⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1 ⇒ n > 2l−2

⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .

Dr Christian Konrad Merge-sort 13 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: ⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1 ⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: ⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1 ⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .

Dr Christian Konrad Merge-sort 13 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: ⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1 ⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: ⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1 ⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .

Dr Christian Konrad Merge-sort 13 / 17

Number of Levels (2)

Level i :

2i−1 nodes (at most)

Array length in level i is ⌈ n
2i−1 ⌉ (at most)

Runtime of merge operation for each node in level i : O(n
2i−1)

Number of Levels:

Array length in last level l is 1: ⌈ n
2l−1 ⌉ = 1

n

2l−1
≤ 1 ⇒ n ≤ 2l−1 ⇒ log(n) + 1 ≤ l

Array length in last but one level l − 1 is 2: ⌈ n
2l−2 ⌉ = 2

n

2l−2
> 1 ⇒ n > 2l−2 ⇒ log(n) + 2 > l

log(n) + 1 ≤ l < log(n) + 2

Hence, l = ⌈log n⌉+ 1 .
Dr Christian Konrad Merge-sort 13 / 17

Runtime of Merge Sort

Sum up Work:

Levels:
l = ⌈log n⌉+ 1

Nodes on level i :
at most 2i−1

Array length in level i :
at most ⌈ n

2i−1 ⌉

Worst-case Runtime:

⌈log n⌉+1∑
i=1

2i−1O
(
⌈ n

2i−1
⌉
)

=

⌈log n⌉+1∑
i=1

2i−1O
(n

2i−1

)

=

⌈log n⌉+1∑
i=1

O (n) = (⌈log n⌉+ 1)O(n) = O(n log n) .

Dr Christian Konrad Merge-sort 14 / 17

Runtime of Merge Sort

Sum up Work:

Levels:
l = ⌈log n⌉+ 1

Nodes on level i :
at most 2i−1

Array length in level i :
at most ⌈ n

2i−1 ⌉

Worst-case Runtime:

⌈log n⌉+1∑
i=1

2i−1O
(
⌈ n

2i−1
⌉
)

=

⌈log n⌉+1∑
i=1

2i−1O
(n

2i−1

)

=

⌈log n⌉+1∑
i=1

O (n) = (⌈log n⌉+ 1)O(n) = O(n log n) .

Dr Christian Konrad Merge-sort 14 / 17

Runtime of Merge Sort

Sum up Work:

Levels:
l = ⌈log n⌉+ 1

Nodes on level i :
at most 2i−1

Array length in level i :
at most ⌈ n

2i−1 ⌉

Worst-case Runtime:

⌈log n⌉+1∑
i=1

2i−1O
(
⌈ n

2i−1
⌉
)

=

⌈log n⌉+1∑
i=1

2i−1O
(n

2i−1

)

=

⌈log n⌉+1∑
i=1

O (n) = (⌈log n⌉+ 1)O(n) = O(n log n) .

Dr Christian Konrad Merge-sort 14 / 17

Runtime of Merge Sort

Sum up Work:

Levels:
l = ⌈log n⌉+ 1

Nodes on level i :
at most 2i−1

Array length in level i :
at most ⌈ n

2i−1 ⌉

Worst-case Runtime:

⌈log n⌉+1∑
i=1

2i−1O
(
⌈ n

2i−1
⌉
)

=

⌈log n⌉+1∑
i=1

2i−1O
(n

2i−1

)

=

⌈log n⌉+1∑
i=1

O (n) = (⌈log n⌉+ 1)O(n) = O(n log n) .

Dr Christian Konrad Merge-sort 14 / 17

Runtime of Merge Sort

Sum up Work:

Levels:
l = ⌈log n⌉+ 1

Nodes on level i :
at most 2i−1

Array length in level i :
at most ⌈ n

2i−1 ⌉

Worst-case Runtime:

⌈log n⌉+1∑
i=1

2i−1O
(
⌈ n

2i−1
⌉
)

=

⌈log n⌉+1∑
i=1

2i−1O
(n

2i−1

)

=

⌈log n⌉+1∑
i=1

O (n)

= (⌈log n⌉+ 1)O(n) = O(n log n) .

Dr Christian Konrad Merge-sort 14 / 17

Runtime of Merge Sort

Sum up Work:

Levels:
l = ⌈log n⌉+ 1

Nodes on level i :
at most 2i−1

Array length in level i :
at most ⌈ n

2i−1 ⌉

Worst-case Runtime:

⌈log n⌉+1∑
i=1

2i−1O
(
⌈ n

2i−1
⌉
)

=

⌈log n⌉+1∑
i=1

2i−1O
(n

2i−1

)

=

⌈log n⌉+1∑
i=1

O (n) = (⌈log n⌉+ 1)O(n)

= O(n log n) .

Dr Christian Konrad Merge-sort 14 / 17

Runtime of Merge Sort

Sum up Work:

Levels:
l = ⌈log n⌉+ 1

Nodes on level i :
at most 2i−1

Array length in level i :
at most ⌈ n

2i−1 ⌉

Worst-case Runtime:

⌈log n⌉+1∑
i=1

2i−1O
(
⌈ n

2i−1
⌉
)

=

⌈log n⌉+1∑
i=1

2i−1O
(n

2i−1

)

=

⌈log n⌉+1∑
i=1

O (n) = (⌈log n⌉+ 1)O(n) = O(n log n) .

Dr Christian Konrad Merge-sort 14 / 17

Merge sort in Practice on Worst-case Instances

 0

 0.5

 1

 1.5

 2

 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06 1e+07

secs

n 46929 102428 364178 1014570

secs 1.03084 4.81622 61.2737 497.879 (Insertion-sort)
secs 0.007157 0.015802 0.0645791 0.169165 (Merge-sort)

Dr Christian Konrad Merge-sort 15 / 17

Stability and In Place Property?

Stability and In Place Property?

Merge sort is stable

Merge sort does not sort in place

Dr Christian Konrad Merge-sort 16 / 17

Stability and In Place Property?

Stability and In Place Property?

Merge sort is stable

Merge sort does not sort in place

Dr Christian Konrad Merge-sort 16 / 17

Stability and In Place Property?

Stability and In Place Property?

Merge sort is stable

Merge sort does not sort in place

Dr Christian Konrad Merge-sort 16 / 17

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

1 A performs two recursive calls on input sizes at most n/2

2 The conquer operation in A takes O(n) time

Then:

A has a runtime of O(n log n) .

Dr Christian Konrad Merge-sort 17 / 17

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

1 A performs two recursive calls on input sizes at most n/2

2 The conquer operation in A takes O(n) time

Then:

A has a runtime of O(n log n) .

Dr Christian Konrad Merge-sort 17 / 17

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

1 A performs two recursive calls on input sizes at most n/2

2 The conquer operation in A takes O(n) time

Then:

A has a runtime of O(n log n) .

Dr Christian Konrad Merge-sort 17 / 17

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

1 A performs two recursive calls on input sizes at most n/2

2 The conquer operation in A takes O(n) time

Then:

A has a runtime of O(n log n) .

Dr Christian Konrad Merge-sort 17 / 17

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

1 A performs two recursive calls on input sizes at most n/2

2 The conquer operation in A takes O(n) time

Then:

A has a runtime of O(n log n) .

Dr Christian Konrad Merge-sort 17 / 17

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

1 A performs two recursive calls on input sizes at most n/2

2 The conquer operation in A takes O(n) time

Then:

A has a runtime of O(n log n) .

Dr Christian Konrad Merge-sort 17 / 17

