Merge-sort

COMS10017 - Algorithms 1

Dr Christian Konrad

Dr Christian Konrad Merge-sort 1/ 17

Definition of the Sorting Problem

Sorting Problem
@ Input: An array A of n numbers
@ Output: A reordering of As.t. A[0] < A[1] <--- < A[n—1]

Dr Christian Konrad Merge-sort 2/ 17

Definition of the Sorting Problem

Sorting Problem
@ Input: An array A of n numbers
@ Output: A reordering of As.t. A[0] < A[1] <--- < A[n—1]

Why is it important?

Dr Christian Konrad Merge-sort 2/ 17

Definition of the Sorting Problem

Sorting Problem
@ Input: An array A of n numbers
@ Output: A reordering of As.t. A[0] < A[1] <--- < A[n—1]

Why is it important?

@ Practical relevance: Appears almost everywhere

Dr Christian Konrad Merge-sort 2/ 17

Definition of the Sorting Problem

Sorting Problem
@ Input: An array A of n numbers
@ Output: A reordering of As.t. A[0] < A[1] <--- < A[n—1]

Why is it important?

@ Practical relevance: Appears almost everywhere

@ Fundamental algorithmic problem, rich set of techniques

Dr Christian Konrad Merge-sort 2/ 17

Definition of the Sorting Problem

Sorting Problem
@ Input: An array A of n numbers
@ Output: A reordering of As.t. A[0] < A[1] <--- < A[n—1]

Why is it important?
@ Practical relevance: Appears almost everywhere
@ Fundamental algorithmic problem, rich set of techniques

@ There is a non-trivial lower bound for sorting (rare!)

Dr Christian Konrad Merge-sort 2/ 17

Definition of the Sorting Problem

Sorting Problem
@ Input: An array A of n numbers
@ Output: A reordering of As.t. A[0] < A[1] <--- < A[n—1]

Why is it important?
@ Practical relevance: Appears almost everywhere

@ Fundamental algorithmic problem, rich set of techniques

@ There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

Dr Christian Konrad Merge-sort 2/ 17

Definition of the Sorting Problem

Sorting Problem
@ Input: An array A of n numbers
@ Output: A reordering of As.t. A[0] < A[1] <--- < A[n—1]

Why is it important?
@ Practical relevance: Appears almost everywhere
@ Fundamental algorithmic problem, rich set of techniques

@ There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

e Worst-case runtime O(n?)

Dr Christian Konrad Merge-sort 2/ 17

Definition of the Sorting Problem

Sorting Problem
@ Input: An array A of n numbers
@ Output: A reordering of As.t. A[0] < A[1] <--- < A[n—1]

Why is it important?
@ Practical relevance: Appears almost everywhere
@ Fundamental algorithmic problem, rich set of techniques

@ There is a non-trivial lower bound for sorting (rare!)

Insertion Sort
e Worst-case runtime O(n?)

@ Surely we can do better?!

Dr Christian Konrad Merge-sort 2/ 17

Insertion sort in Practice on Worst-case Instances

1400 T
secs

1200 - B

1000 4

400 |- 4

200 + —

0 1 1 1 1 1 1 1
0 200000 400000 600000 800000 1e+06 1.2e+061.4e+061.6e+061.8e+0!

n | 46929 | 102428 | 364178 | 1014570
secs | 1.03084 | 4.81622 | 61.2737 | 497.879

Dr Christian Konrad Merge-sort 3/ 17

Properties of a Sorting Algorithm

Dr Christian Konrad Merge-sort 4/ 17

Properties of a Sorting Algorithm

Definition (in place)

Dr Christian Konrad Merge-sort 4/ 17

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most O(1)
array elements are stored outside the array

(20| a1[22[as[a 25| a7 |2 [20] a10]

| Joq)

Dr Christian Konrad Merge-sort 4/ 17

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most O(1)
array elements are stored outside the array

(20[a1]az[a3] a4 [a5]a [a7 8] a9 [a0 |
1 o

Example: Insertion-sort is in place

Dr Christian Konrad Merge-sort 4/ 17

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most O(1)
array elements are stored outside the array

(20[a1]az[a3] a4 [a5]a [a7 8] a9 [a0 |
1 o

Example: Insertion-sort is in place

Definition (stability)

Dr Christian Konrad Merge-sort 4/ 17

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most O(1)
array elements are stored outside the array

(20[a1]az[a3] a4 [a5]a [a7 8] a9 [a0 |
1 o

Example: Insertion-sort is in place

Definition (stability)
A sorting algorithm is stable if any pair of equal numbers in the
input array appear in the same order in the sorted array

Dr Christian Konrad Merge-sort 4/ 17

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most O(1)
array elements are stored outside the array

(20[a1]az[a3] a4 [a5]a [a7 8] a9 [a0 |
1 o

Example: Insertion-sort is in place

Definition (stability)
A sorting algorithm is stable if any pair of equal numbers in the
input array appear in the same order in the sorted array

Example: Insertion-sort is stable

Dr Christian Konrad Merge-sort 4/ 17

Records, Keys, and Satellite Data

Sorting Complex Data

Dr Christian Konrad Merge-sort 5/ 17

Records, Keys, and Satellite Data

Sorting Complex Data

@ In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

Dr Christian Konrad Merge-sort 5/ 17

Records, Keys, and Satellite Data

Sorting Complex Data

@ In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

@ A data item is often also called a record

Dr Christian Konrad Merge-sort 5/ 17

Records, Keys, and Satellite Data

Sorting Complex Data

@ In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

@ A data item is often also called a record

@ The key is the part of the record according to which the data
is to be sorted

Dr Christian Konrad Merge-sort 5/ 17

Records, Keys, and Satellite Data

Sorting Complex Data

@ In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

@ A data item is often also called a record

@ The key is the part of the record according to which the data
is to be sorted

o Data different to the key is also referred to as satellite data

Dr Christian Konrad Merge-sort 5/ 17

Records, Keys, and Satellite Data

Sorting Complex Data

@ In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

@ A data item is often also called a record

@ The key is the part of the record according to which the data
is to be sorted

o Data different to the key is also referred to as satellite data

family name | first name | data of birth | role

Smith Peter 02.10.1982 lecturer
Hills Emma 05.05.1975 reader
Jones Tom 03.02.1977 senior lecturer

Dr Christian Konrad Merge-sort 5/ 17

Records, Keys, and Satellite Data

Sorting Complex Data

@ In reality, data that is to be sorted is rarely entirely numerical
(e.g. sort people in a database according to their last name)

@ A data item is often also called a record

@ The key is the part of the record according to which the data
is to be sorted

o Data different to the key is also referred to as satellite data

family name | first name | data of birth | role

Smith Peter 02.10.1982 lecturer
Hills Emma 05.05.1975 reader
Jones Tom 03.02.1977 senior lecturer

Observe: Stability makes more sense when sorting complex data
as opposed to numbers

Dr Christian Konrad Merge-sort 5/ 17

Dr Christian Konrad Merge-sort 6/ 17

Key Idea:

Dr Christian Konrad Merge-sort 6/ 17

Key Idea:
@ Suppose that left half and right half of array is sorted

Dr Christian Konrad Merge-sort 6/ 17

Key Idea:
@ Suppose that left half and right half of array is sorted

@ Then we can merge the two sorted halves to a sorted array in

O(n) time:

Merge Operation

Dr Christian Konrad Merge-sort 6/ 17

Key Idea:
@ Suppose that left half and right half of array is sorted

@ Then we can merge the two sorted halves to a sorted array in

O(n) time:

Merge Operation
@ Copy left half of A to new array B

Dr Christian Konrad Merge-sort 6/ 17

Key Idea:
@ Suppose that left half and right half of array is sorted

@ Then we can merge the two sorted halves to a sorted array in

O(n) time:
Merge Operation

@ Copy left half of A to new array B
@ Copy right half of A to new array C

Dr Christian Konrad Merge-sort 6/ 17

Key Idea:
@ Suppose that left half and right half of array is sorted
@ Then we can merge the two sorted halves to a sorted array in

O(n) time:

Merge Operation
@ Copy left half of A to new array B
@ Copy right half of A to new array C

@ Traverse B and C simultaneously from left to right and write
the smallest element at the current positions to A

Dr Christian Konrad Merge-sort 6/ 17

Example: Merge Operation

Dr Christian Konrad Merge-sort

Example: Merge Operation

Example: Merge Operation

Example: Merge Operation

Example: Merge Operation

Example: Merge Operation

Example: Merge Operation

Example: Merge Operation

Example: Merge Operation

Example: Merge Operation

Analysis: Merge Operation

Merge Operation

Dr Christian Konrad Merge-sort 8/ 17

Analysis: Merge Operation

Merge Operation

@ Input: An array A of integers of length n (n even) such that
A0, 5 — 1] and A[7, n — 1] are sorted
@ Output: Sorted array A

Dr Christian Konrad Merge-sort 8/ 17

Analysis: Merge Operation

Merge Operation

@ Input: An array A of integers of length n (n even) such that
A0, 5 — 1] and A[7, n — 1] are sorted
@ Output: Sorted array A

Runtime Analysis:

Dr Christian Konrad Merge-sort 8/ 17

Analysis: Merge Operation

Merge Operation

@ Input: An array A of integers of length n (n even) such that
A0, 5 — 1] and A[7, n — 1] are sorted
@ Output: Sorted array A

Runtime Analysis:
@ Copy left half of A to B: O(n) operations

Dr Christian Konrad Merge-sort 8/ 17

Analysis: Merge Operation

Merge Operation

@ Input: An array A of integers of length n (n even) such that
A0, 5 — 1] and A[7, n — 1] are sorted
@ Output: Sorted array A

Runtime Analysis:
@ Copy left half of A to B: O(n) operations
@ Copy right half of A to C: O(n) operations

Dr Christian Konrad Merge-sort 8/ 17

Analysis: Merge Operation

Merge Operation
@ Input: An array A of integers of length n (n even) such that
A0, 5 — 1] and A[7, n — 1] are sorted
@ Output: Sorted array A

Runtime Analysis:
@ Copy left half of A to B: O(n) operations
@ Copy right half of A to C: O(n) operations
© Merge B and C and store in A: O(n) operations

Dr Christian Konrad Merge-sort 8/ 17

Analysis: Merge Operation

Merge Operation

@ Input: An array A of integers of length n (n even) such that
A0, 5 — 1] and A[7, n — 1] are sorted
@ Output: Sorted array A

Runtime Analysis:
@ Copy left half of A to B: O(n) operations
@ Copy right half of A to C: O(n) operations
© Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

Dr Christian Konrad Merge-sort 8/ 17

Analysis: Merge Operation

Merge Operation

@ Input: An array A of integers of length n (n even) such that
A0, 5 — 1] and A[7, n — 1] are sorted
@ Output: Sorted array A

Runtime Analysis:
@ Copy left half of A to B: O(n) operations
@ Copy right half of A to C: O(n) operations
© Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case

How can we establish that left and right halves are sorted?

Dr Christian Konrad Merge-sort 8/ 17

Analysis: Merge Operation

Merge Operation

@ Input: An array A of integers of length n (n even) such that
A0, 5 — 1] and A[7, n — 1] are sorted
@ Output: Sorted array A

Runtime Analysis:
@ Copy left half of A to B: O(n) operations
@ Copy right half of A to C: O(n) operations
© Merge B and C and store in A: O(n) operations

Overall: O(n) time in worst case
How can we establish that left and right halves are sorted?

Divide and Conquer!

Dr Christian Konrad Merge-sort 8/ 17

Merge Sort: A Divide and Conquer Algorithm

Dr Christian Konrad Merge-sort 9/ 17

Merge Sort: A Divide and Conquer Algorithm

Require: Array A of n numbers
if n =1 then
return A
A0, [2]] - MERGESORT(AI0, [3]])
All5]+1,n—1] < MERGESORT(A[| 5 |+1, n—1])
A < MERGE(A)
return A

MERGESORT

Dr Christian Konrad Merge-sort 9/ 17

Merge Sort: A Divide and Conquer Algorithm

Require: Array A of n numbers
if n =1 then
return A
A0, [2]] - MERGESORT(AI0, [3]])
All5]+1,n—1] < MERGESORT(A[| 5 |+1, n—1])
A < MERGE(A)
return A

MERGESORT
Structure of a Divide and Conquer Algorithm

Dr Christian Konrad Merge-sort 9/ 17

Merge Sort: A Divide and Conquer Algorithm

Require: Array A of n numbers
if n =1 then
return A
A0, [2]] - MERGESORT(AI0, [3]])
All5]+1,n—1] < MERGESORT(A[| 5 |+1, n—1])
A < MERGE(A)
return A

MERGESORT
Structure of a Divide and Conquer Algorithm

e Divide the problem into a number of subproblems that are
smaller instances of the same problem.

Dr Christian Konrad Merge-sort 9/ 17

Merge Sort: A Divide and Conquer Algorithm

Require: Array A of n numbers
if n =1 then
return A
A0, | 5]] <= MERGESORT(A[0, | 5 |])
All5]+1,n—1] < MERGESORT(A[| 5 |+1, n—1])
A + MERGE(A)
return A

MERGESORT
Structure of a Divide and Conquer Algorithm

e Divide the problem into a number of subproblems that are
smaller instances of the same problem.

e Conquer the subproblems by solving them recursively. If the
subproblems are small enough, just solve them in a
straightforward manner.

Dr Christian Konrad Merge-sort 9/ 17

Merge Sort: A Divide and Conquer Algorithm

Require: Array A of n numbers
if n =1 then
return A
A0, | 5]] <= MERGESORT(A[0, | 5 |])
All5]+1,n—1] < MERGESORT(A[| 5 |+1, n—1])
A + MERGE(A)
return A

MERGESORT
Structure of a Divide and Conquer Algorithm

e Divide the problem into a number of subproblems that are
smaller instances of the same problem.

e Conquer the subproblems by solving them recursively. If the
subproblems are small enough, just solve them in a
straightforward manner.

@ Combine the solutions to the subproblems into the solution
for the original problem.

Dr Christian Konrad Merge-sort 9/ 17

Analyzing MergeSort: An Example

Analyzing MergeSort: An Example

Dr Christian Konrad Merge-sort

Analyzing Merge Sort

Analysis ldea:

Dr Christian Konrad Merge-sort 11/ 17

Analyzing Merge Sort

Analysis ldea:

@ We need to sum up the work spent in each node of the
recursion tree

Dr Christian Konrad Merge-sort 11/ 17

Analyzing ge Sort

Analysis ldea:

@ We need to sum up the work spent in each node of the
recursion tree

@ The recursion tree in the example is a complete binary tree

Dr Christian Konrad Merge-sort 11/ 17

Analyzing Merge Sort

Analysis ldea:

@ We need to sum up the work spent in each node of the
recursion tree

@ The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Dr Christian Konrad Merge-sort 11/ 17

Analyzing Merge Sort

Analysis ldea:

@ We need to sum up the work spent in each node of the
recursion tree

@ The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.

Dr Christian Konrad Merge-sort 11/ 17

Analyzing Merge Sort

Analysis ldea:

@ We need to sum up the work spent in each node of the
recursion tree

@ The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.
(we will talk about trees in much more detail later in this unit)

Dr Christian Konrad Merge-sort 11/ 17

Analyzing Merge Sort

Analysis ldea:

@ We need to sum up the work spent in each node of the
recursion tree

@ The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.
(we will talk about trees in much more detail later in this unit)

Questions:

Dr Christian Konrad Merge-sort 11/ 17

Analyzing Merge Sort

Analysis ldea:

@ We need to sum up the work spent in each node of the
recursion tree

@ The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.
(we will talk about trees in much more detail later in this unit)

Questions:

@ How many levels?

Dr Christian Konrad Merge-sort 11/ 17

Analyzing Merge Sort

Analysis ldea:

@ We need to sum up the work spent in each node of the
recursion tree

@ The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.
(we will talk about trees in much more detail later in this unit)

Questions:
@ How many levels?

@ How many nodes per level?

Dr Christian Konrad Merge-sort 11/ 17

Analyzing Merge Sort

Analysis ldea:

@ We need to sum up the work spent in each node of the
recursion tree

@ The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has
either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2
children.
(we will talk about trees in much more detail later in this unit)

Questions:
@ How many levels?
@ How many nodes per level?

@ Time spent per node?

Dr Christian Konrad Merge-sort 11/ 17

Number of Levels

Level 1

Level 2

Level 3

Level 4

Dr Christian Konrad Merge-sort

Number of Levels (2)

Level /:

Dr Christian Konrad Merge-sort 13/ 17

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)

Dr Christian Konrad Merge-sort 13/ 17

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)

o Array length in level i is [52;] (at most)

Dr Christian Konrad Merge-sort 13/ 17

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)
o Array length in level i is [527] (at most)

@ Runtime of merge operation for each node in level i: 0(2,-'11)

Dr Christian Konrad Merge-sort 13/ 17

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)
o Array length in level i is [527] (at most)

@ Runtime of merge operation for each node in level i: 0(2,-'11)

Number of Levels:

Dr Christian Konrad Merge-sort 13/ 17

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)
o Array length in level i is [527] (at most)

® Runtime of merge operation for each node in level i: O(5%1)

Number of Levels:
@ Array length in last level / is 1:

Dr Christian Konrad Merge-sort 13/ 17

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)
o Array length in level i is [527] (at most)

® Runtime of merge operation for each node in level i: O(5%1)

Number of Levels:
o Array length in last level /is 1: [52;] =1

Dr Christian Konrad Merge-sort 13/ 17

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)
o Array length in level i is [527] (at most)

® Runtime of merge operation for each node in level i: O(5%1)

Number of Levels:
o Array length in last level /is 1: [52;] =1

n
Fgl:»ngz’—l

Dr Christian Konrad Merge-sort 13/ 17

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)
o Array length in level i is [527] (at most)

® Runtime of merge operation for each node in level i: O(5%1)

Number of Levels:
o Array length in last level /is 1: [52;] =1

2,—’11§1:>n§2/_1:>|og(n)+1§/

Dr Christian Konrad Merge-sort 13/ 17

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)
o Array length in level i is [527] (at most)

® Runtime of merge operation for each node in level i: O(5%1)

Number of Levels:
o Array length in last level /is 1: [52;] =1
n |—
S1 S1=n<2 L= log(n)+1<1/

@ Array length in last but one level / — 1 is 2:

Dr Christian Konrad Merge-sort 13/ 17

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)
o Array length in level i is [527] (at most)

® Runtime of merge operation for each node in level i: O(5%1)

Number of Levels:
o Array length in last level /is 1: [52;] =1

n |—
S1 S1=n<2 L= log(n)+1<1/
o Array length in last but one level / — 1is 2: [52;] =2

n

52 > 1

Dr Christian Konrad Merge-sort 13/ 17

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)
o Array length in level i is [527] (at most)

® Runtime of merge operation for each node in level i: O(5%1)

Number of Levels:
o Array length in last level /is 1: [52;] =1

2,—’11§1:>n§2/_1:>|og(n)+1§/

o Array length in last but one level / — 1is 2: [52;] =2

n _
2,7_2>1:>n>2l 2

Dr Christian Konrad Merge-sort 13/ 17

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)
o Array length in level i is [527] (at most)

® Runtime of merge operation for each node in level i: O(5%1)

Number of Levels:
o Array length in last level /is 1: [52;] =1

n

F§1:>n§2/_1:>|og(n)+1§/

o Array length in last but one level / — 1is 2: [52;] =2

n
2,—_2>1;sn>2’—2;»|og(n)+2>/

Dr Christian Konrad Merge-sort 13/ 17

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)
o Array length in level i is [527] (at most)

® Runtime of merge operation for each node in level i: O(5%1)

Number of Levels:
o Array length in last level /is 1: [52;] =1

n

F§1:>n§2/_1:>|og(n)+1§/

o Array length in last but one level / — 1is 2: [52;] =2
s 1on>22 s og(n) +2>
21-2 g€

log(n) +1 <1< log(n)+2

Dr Christian Konrad Merge-sort 13/ 17

Number of Levels (2)

Level i:
@ 2/~ nodes (at most)
o Array length in level i is [527] (at most)

® Runtime of merge operation for each node in level i: O(5%1)

Number of Levels:
o Array length in last level /is 1: [52;] =1

n

F§1:>n§2/_1:>|og(n)+1§/

o Array length in last but one level / — 1is 2: [52;] =2

n
2,—_2>1;sn>2’—2;»|og(n)+2>/

log(n) +1 <1< log(n)+2
Hence, | = [logn] +1 .

Dr Christian Konrad Merge-sort 13/ 17

Runtime of Merge Sort

Sum up Work:
o Levels: [2[=o]7]=]a]e]o]7]
I =1[logn] +1
@ Nodes on level i: [12]s[7]2]

at most 211

o Array length in level it []5] [7]

|
T dydbhdodn
) B L) o) [

N)
w
©
-
o
~

Dr Christian Konrad Merge-sort 14/ 17

Runtime of Merge Sort

Sum up Work:
o Levels: [2[=o]7]=]a]e]o]7]
I =1[logn] +1
@ Nodes on level i: [12]s[7]2]

at most 211

o Array length in level it []5] [7]

|
e Budhdbdn
) B L) o) [

Worst-case Runtime:

N)
w
©
-
o
~

Dr Christian Konrad Merge-sort 14/ 17

Runtime of Merge Sort

Sum up Work:
o Levels: [2[=o]7]=]a]e]o]7]
I =1[logn] +1
@ Nodes on level i: [12]s[7]2]

at most 211

o Array length in level i: [22] 9] 7]7] [5]¢] [15]7]

atmost[gf.nl} %J

Worst-case Runtime:

[log n]+1

>, 270 (I)

i=1

Dr Christian Konrad Merge-sort 14/ 17

Runtime of Merge Sort

Sum up Work:
o Levels: [2[=o]7]=]a]e]o]7]
I =1[logn] +1
@ Nodes on level i: [12]s[7]2]

at most 211

o Array length in level i: [15]

Le[o] []=] [o]e] ']
. dndbdndd
2]

Worst-case Runtime:

[log n]+1 [log n]+1

; 2"710((2;,110 = ; 21’710(2;’11)

Dr Christian Konrad Merge-sort 14/ 17

Runtime of Merge Sort

Sum up Work:
o Levels: [2[=o]7]=]a]e]o]7]
I =1[logn] +1
@ Nodes on level i: [12]s[7]2]

at most 211

o Array length in level i: [15]

Le[o] []=] [o]e] ']
. dndbdndd
2]

Worst-case Runtime:

[log n]+1 - " [log n]+1 » n
Z 2" O((2i—1—‘> - Z 2 O<2i—1>
i=1 i=1

[log n]+1

=) 0(n)
i=1

Dr Christian Konrad Merge-sort 14/ 17

Runtime of Merge Sort

Sum up Work:
o Levels: [2[=o]7]=]a]e]o]7]
I =1[logn] +1
@ Nodes on level i: [12]s[7]2]

at most 211

o Array length in level i:

3 R E2 EY B N EY B I K
. dndbdndd
. 2]

Worst-case Runtime:

[log n]+1 - " [log n]+1 » n
20 (51 - 5 a0 52
[log n]+1
Z O (n) = ([logn] +1) O(n)

Dr Christian Konrad Merge-sort 14/ 17

Runtime of Merge Sort

Sum up Work:
o Levels: [2[=o]7]=]a]e]o]7]
I =1[logn] +1
@ Nodes on level i: [12]s[7]2]

at most 211

o Array length in level i:

3 R E2 EY B N EY B I K
. dndbdndd
. 2]

Worst-case Runtime:

[log n]+1 - " [log n]+1 » n
; 2" O((zi—lw - Z; 2" O(zi—1>
[log n]+1
Z O (n) = ([logn] +1) O(n) = O(nlogn) .

Dr Christian Konrad Merge-sort 14/ 17

Merge sort in Practice on Worst-case Instances

2 T T

secs
1.5 -
1+
0.5
° 0 1e-‘l-06 2e-‘+-06 3e-‘i-06 4e-‘i-06 5e-‘l-06 6e-‘|-06 7e-‘i-06 8e-‘i-06 9e-‘i-06 le+07
n | 46929 | 102428 | 364178 | 1014570
secs | 1.03084 | 4.81622 | 61.2737 | 497.879 (Insertion-sort)
secs | 0.007157 | 0.015802 | 0.0645791 | 0.169165 (Merge-sort)

Dr Christian Konrad Merge-sort 15/ 17

Stability and In Place Property?

Stability and In Place Property?

Dr Christian Konrad Merge-sort 16/ 17

Stability and In Place Property?

Stability and In Place Property?

@ Merge sort is stable

Dr Christian Konrad Merge-sort 16/ 17

Stability and In Place Property?

Stability and In Place Property?
@ Merge sort is stable

@ Merge sort does not sort in place

Dr Christian Konrad Merge-sort 16/ 17

Generalizing the Analysis

Divide and Conquer Algorithm:

Dr Christian Konrad Merge-sort 17/ 17

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

Dr Christian Konrad Merge-sort 17/ 17

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

© A performs two recursive calls on input sizes at most n/2

Dr Christian Konrad Merge-sort 17/ 17

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

© A performs two recursive calls on input sizes at most n/2

@ The conquer operation in A takes O(n) time

Dr Christian Konrad Merge-sort 17/ 17

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

© A performs two recursive calls on input sizes at most n/2
@ The conquer operation in A takes O(n) time
Then:

Dr Christian Konrad Merge-sort 17/ 17

Generalizing the Analysis

Divide and Conquer Algorithm:

Let A be a divide and conquer algorithm with the following
properties:

© A performs two recursive calls on input sizes at most n/2
@ The conquer operation in A takes O(n) time
Then:

A has a runtime of O(nlog n) ‘

Dr Christian Konrad Merge-sort 17/ 17

