Merge-sort
 COMS10017 - Algorithms 1

Dr Christian Konrad

Definition of the Sorting Problem

Sorting Problem

- Input: An array A of n numbers
- Output: A reordering of A s.t. $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

Definition of the Sorting Problem

Sorting Problem

- Input: An array A of n numbers
- Output: A reordering of A s.t. $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

Why is it important?

Definition of the Sorting Problem

Sorting Problem

- Input: An array A of n numbers
- Output: A reordering of A s.t. $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

Why is it important?

- Practical relevance: Appears almost everywhere

Definition of the Sorting Problem

Sorting Problem

- Input: An array A of n numbers
- Output: A reordering of A s.t. $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques

Definition of the Sorting Problem

Sorting Problem

- Input: An array A of n numbers
- Output: A reordering of A s.t. $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques
- There is a non-trivial lower bound for sorting (rare!)

Definition of the Sorting Problem

Sorting Problem

- Input: An array A of n numbers
- Output: A reordering of A s.t. $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques
- There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

Definition of the Sorting Problem

Sorting Problem

- Input: An array A of n numbers
- Output: A reordering of A s.t. $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques
- There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

- Worst-case runtime $O\left(n^{2}\right)$

Definition of the Sorting Problem

Sorting Problem

- Input: An array A of n numbers
- Output: A reordering of A s.t. $A[0] \leq A[1] \leq \cdots \leq A[n-1]$

Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques
- There is a non-trivial lower bound for sorting (rare!)

Insertion Sort

- Worst-case runtime $O\left(n^{2}\right)$
- Surely we can do better?!

Insertion sort in Practice on Worst-case Instances

Properties of a Sorting Algorithm

Properties of a Sorting Algorithm

Definition (in place)

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most $O(1)$ array elements are stored outside the array

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & a_{8} & a_{9} & a_{10} \\
\hline
\end{array} \\
& \square O(1)
\end{aligned}
$$

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most $O(1)$ array elements are stored outside the array

Example: Insertion-sort is in place

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most $O(1)$ array elements are stored outside the array

Example: Insertion-sort is in place

Definition (stability)

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most $O(1)$ array elements are stored outside the array

Example: Insertion-sort is in place
Definition (stability)
A sorting algorithm is stable if any pair of equal numbers in the input array appear in the same order in the sorted array

Properties of a Sorting Algorithm

Definition (in place)
A sorting algorithm is in place if at any moment at most $O(1)$ array elements are stored outside the array

Example: Insertion-sort is in place
Definition (stability)
A sorting algorithm is stable if any pair of equal numbers in the input array appear in the same order in the sorted array

Example: Insertion-sort is stable

Records, Keys, and Satellite Data

Sorting Complex Data

Records, Keys, and Satellite Data

Sorting Complex Data

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)

Records, Keys, and Satellite Data

Sorting Complex Data

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record

Records, Keys, and Satellite Data

Sorting Complex Data

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record
- The key is the part of the record according to which the data is to be sorted

Records, Keys, and Satellite Data

Sorting Complex Data

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record
- The key is the part of the record according to which the data is to be sorted
- Data different to the key is also referred to as satellite data

Records, Keys, and Satellite Data

Sorting Complex Data

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record
- The key is the part of the record according to which the data is to be sorted
- Data different to the key is also referred to as satellite data

family name	first name	data of birth	role
Smith	Peter	02.10 .1982	lecturer
Hills	Emma	05.05 .1975	reader
Jones	Tom	03.02 .1977	senior lecturer
\ldots			

Records, Keys, and Satellite Data

Sorting Complex Data

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a record
- The key is the part of the record according to which the data is to be sorted
- Data different to the key is also referred to as satellite data

family name	first name	data of birth	role
Smith	Peter	02.10 .1982	lecturer
Hills	Emma	05.05 .1975	reader
Jones	Tom	03.02 .1977	senior lecturer
\ldots			

Observe: Stability makes more sense when sorting complex data as opposed to numbers

Merge Sort

Merge Sort

Key Idea:

Merge Sort

Key Idea:

- Suppose that left half and right half of array is sorted

Merge Sort

Key Idea:

- Suppose that left half and right half of array is sorted
- Then we can merge the two sorted halves to a sorted array in $O(n)$ time:

Merge Operation

Merge Sort

Key Idea:

- Suppose that left half and right half of array is sorted
- Then we can merge the two sorted halves to a sorted array in $O(n)$ time:

Merge Operation

- Copy left half of A to new array B

Merge Sort

Key Idea:

- Suppose that left half and right half of array is sorted
- Then we can merge the two sorted halves to a sorted array in $O(n)$ time:

Merge Operation

- Copy left half of A to new array B
- Copy right half of A to new array C

Merge Sort

Key Idea:

- Suppose that left half and right half of array is sorted
- Then we can merge the two sorted halves to a sorted array in $O(n)$ time:

Merge Operation

- Copy left half of A to new array B
- Copy right half of A to new array C
- Traverse B and C simultaneously from left to right and write the smallest element at the current positions to A

Example: Merge Operation

$$
\begin{array}{l|l|l|l|l|l|l|l|l|}
\hline A & 1 & 4 & 9 & 10 & 3 & 5 & 7 & 11 \\
\hline
\end{array}
$$

Example: Merge Operation

$$
\begin{array}{l|l|l|l|l|l|l|l|}
\hline A & \begin{array}{ll|l|l|l|l|}
& 1 & 4 & 9 & 10 & 3
\end{array} & 5 & 7 & 11 \\
\hline
\end{array}
$$

Example: Merge Operation

Example: Merge Operation

A

B \square

C	3	5	7	11

Example: Merge Operation

Example: Merge Operation

$$
\begin{array}{l|l|l|l|l|l|l|l|}
\hline A & \cline { 2 - 3 } & 3 & 3 & 4 & 5 & 7 & 9 \\
\hline
\end{array}
$$

Analysis: Merge Operation

Merge Operation

Analysis: Merge Operation

Merge Operation

- Input: An array A of integers of length n (n even) such that $A\left[0, \frac{n}{2}-1\right]$ and $A\left[\frac{n}{2}, n-1\right]$ are sorted
- Output: Sorted array A

Analysis: Merge Operation

Merge Operation

- Input: An array A of integers of length n (n even) such that $A\left[0, \frac{n}{2}-1\right]$ and $A\left[\frac{n}{2}, n-1\right]$ are sorted
- Output: Sorted array A

Runtime Analysis:

Analysis: Merge Operation

Merge Operation

- Input: An array A of integers of length n (n even) such that $A\left[0, \frac{n}{2}-1\right]$ and $A\left[\frac{n}{2}, n-1\right]$ are sorted
- Output: Sorted array A

Runtime Analysis:

(1) Copy left half of A to $B: O(n)$ operations

Analysis: Merge Operation

Merge Operation

- Input: An array A of integers of length n (n even) such that $A\left[0, \frac{n}{2}-1\right]$ and $A\left[\frac{n}{2}, n-1\right]$ are sorted
- Output: Sorted array A

Runtime Analysis:

(1) Copy left half of A to $B: O(n)$ operations
(2) Copy right half of A to C : $O(n)$ operations

Analysis: Merge Operation

Merge Operation

- Input: An array A of integers of length n (n even) such that $A\left[0, \frac{n}{2}-1\right]$ and $A\left[\frac{n}{2}, n-1\right]$ are sorted
- Output: Sorted array A

Runtime Analysis:

(1) Copy left half of A to $B: O(n)$ operations
(2) Copy right half of A to $C: O(n)$ operations
(3) Merge B and C and store in $A: O(n)$ operations

Analysis: Merge Operation

Merge Operation

- Input: An array A of integers of length n (n even) such that $A\left[0, \frac{n}{2}-1\right]$ and $A\left[\frac{n}{2}, n-1\right]$ are sorted
- Output: Sorted array A

Runtime Analysis:

(1) Copy left half of A to $B: O(n)$ operations
(2) Copy right half of A to C : $O(n)$ operations
(3) Merge B and C and store in $A: O(n)$ operations

Overall: $O(n)$ time in worst case

Analysis: Merge Operation

Merge Operation

- Input: An array A of integers of length n (n even) such that $A\left[0, \frac{n}{2}-1\right]$ and $A\left[\frac{n}{2}, n-1\right]$ are sorted
- Output: Sorted array A

Runtime Analysis:

(1) Copy left half of A to $B: O(n)$ operations
(2) Copy right half of A to C : $O(n)$ operations
(3) Merge B and C and store in $A: O(n)$ operations

Overall: $O(n)$ time in worst case
How can we establish that left and right halves are sorted?

Analysis: Merge Operation

Merge Operation

- Input: An array A of integers of length n (n even) such that $A\left[0, \frac{n}{2}-1\right]$ and $A\left[\frac{n}{2}, n-1\right]$ are sorted
- Output: Sorted array A

Runtime Analysis:

(1) Copy left half of A to $B: O(n)$ operations
(2) Copy right half of A to C : $O(n)$ operations
(3) Merge B and C and store in $A: O(n)$ operations

Overall: $O(n)$ time in worst case
How can we establish that left and right halves are sorted?

> Divide and Conquer!

Merge Sort: A Divide and Conquer Algorithm

Merge Sort: A Divide and Conquer Algorithm

```
Require: Array \(A\) of \(n\) numbers
    if \(n=1\) then
        return \(A\)
    \(A\left[0,\left\lfloor\frac{n}{2}\right\rfloor\right] \leftarrow \operatorname{MergeSort}\left(A\left[0,\left\lfloor\frac{n}{2}\right]\right]\right)\)
    \(A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right] \leftarrow \operatorname{MergeSort}\left(A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right]\right)\)
    \(A \leftarrow \operatorname{Merge}(A)\)
    return \(A\)
```

MERGESort

Merge Sort: A Divide and Conquer Algorithm

```
Require: Array \(A\) of \(n\) numbers
    if \(n=1\) then
        return \(A\)
    \(A\left[0,\left\lfloor\frac{n}{2}\right\rfloor\right] \leftarrow \operatorname{MErgeSort}\left(A\left[0,\left\lfloor\frac{n}{2}\right\rfloor\right]\right)\)
    \(A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right] \leftarrow \operatorname{MErgeSort}\left(A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right]\right)\)
    \(A \leftarrow \operatorname{Merge}(A)\)
    return \(A\)
```

MERGESORT
Structure of a Divide and Conquer Algorithm

Merge Sort: A Divide and Conquer Algorithm

```
Require: Array \(A\) of \(n\) numbers
    if \(n=1\) then
        return \(A\)
    \(A\left[0,\left\lfloor\frac{n}{2}\right\rfloor\right] \leftarrow \operatorname{MergeSort}\left(A\left[0,\left\lfloor\frac{n}{2}\right]\right]\right)\)
    \(A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right] \leftarrow \operatorname{MergeSort}\left(A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right]\right)\)
    \(A \leftarrow \operatorname{Merge}(A)\)
    return \(A\)
```

MergeSort

Structure of a Divide and Conquer Algorithm

- Divide the problem into a number of subproblems that are smaller instances of the same problem.

Merge Sort: A Divide and Conquer Algorithm

```
Require: Array \(A\) of \(n\) numbers
    if \(n=1\) then
        return \(A\)
    \(A\left[0,\left\lfloor\frac{n}{2}\right\rfloor\right] \leftarrow \operatorname{MergeSort}\left(A\left[0,\left\lfloor\frac{n}{2}\right]\right]\right)\)
    \(A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right] \leftarrow \operatorname{MergeSort}\left(A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right]\right)\)
    \(A \leftarrow \operatorname{Merge}(A)\)
    return \(A\)
```

MergeSort

Structure of a Divide and Conquer Algorithm

- Divide the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively. If the subproblems are small enough, just solve them in a straightforward manner.

Merge Sort: A Divide and Conquer Algorithm

```
Require: Array \(A\) of \(n\) numbers
    if \(n=1\) then
        return \(A\)
    \(A\left[0,\left\lfloor\frac{n}{2}\right\rfloor\right] \leftarrow \operatorname{MergeSort}\left(A\left[0,\left\lfloor\frac{n}{2}\right]\right]\right)\)
    \(A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right] \leftarrow \operatorname{MergeSort}\left(A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right]\right)\)
    \(A \leftarrow \operatorname{Merge}(A)\)
    return \(A\)
```

MERGESORT

Structure of a Divide and Conquer Algorithm

- Divide the problem into a number of subproblems that are smaller instances of the same problem.
- Conquer the subproblems by solving them recursively. If the subproblems are small enough, just solve them in a straightforward manner.
- Combine the solutions to the subproblems into the solution for the original problem.

Analyzing MergeSort: An Example

Analyzing MergeSort: An Example

Analyzing Merge Sort

Analysis Idea:

Analyzing Merge Sort

Analysis Idea:

- We need to sum up the work spent in each node of the recursion tree

Analyzing Merge Sort

Analysis Idea:

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

Analyzing Merge Sort

Analysis Idea:

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has either 2 or 0 children.

Analyzing Merge Sort

Analysis Idea:

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2 children.

Analyzing Merge Sort

Analysis Idea:

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2 children.
(we will talk about trees in much more detail later in this unit)

Analyzing Merge Sort

Analysis Idea:

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2 children.
(we will talk about trees in much more detail later in this unit)
Questions:

Analyzing Merge Sort

Analysis Idea:

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2 children.
(we will talk about trees in much more detail later in this unit)
Questions:

- How many levels?

Analyzing Merge Sort

Analysis Idea:

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2 children.
(we will talk about trees in much more detail later in this unit)
Questions:

- How many levels?
- How many nodes per level?

Analyzing Merge Sort

Analysis Idea:

- We need to sum up the work spent in each node of the recursion tree
- The recursion tree in the example is a complete binary tree

Definition: A tree is a complete binary tree if every node has either 2 or 0 children.

Definition: A tree is a binary tree if every node has at most 2 children.
(we will talk about trees in much more detail later in this unit)
Questions:

- How many levels?
- How many nodes per level?
- Time spent per node?

Number of Levels

Number of Levels (2)

Level i :

Number of Levels (2)

Level i :

- 2^{i-1} nodes (at most)

Number of Levels (2)

Level i :

- 2^{i-1} nodes (at most)
- Array length in level i is $\left\lceil\frac{n}{\left.2^{i-1}\right\rceil \text { (at most) }}\right.$

Number of Levels (2)

Level i :

- 2^{i-1} nodes (at most)
- Array length in level i is $\left\lceil\frac{n}{2^{i-1}}\right\rceil$ (at most)
- Runtime of merge operation for each node in level $i: O\left(\frac{n}{2^{i-1}}\right)$

Number of Levels (2)

Level i :

- 2^{i-1} nodes (at most)
- Array length in level i is $\left\lceil\frac{n}{2^{i-1}}\right\rceil$ (at most)
- Runtime of merge operation for each node in level $i: O\left(\frac{n}{2^{i-1}}\right)$

Number of Levels:

Number of Levels (2)

Level i :

- 2^{i-1} nodes (at most)
- Array length in level i is $\left\lceil\frac{n}{\left.2^{i-1}\right\rceil \text { (at most) }}\right.$
- Runtime of merge operation for each node in level i : $O\left(\frac{n}{2^{i-1}}\right)$

Number of Levels:

- Array length in last level / is 1 :

Number of Levels (2)

Level i :

- 2^{i-1} nodes (at most)
- Array length in level i is $\left\lceil\frac{n}{2^{i-1}}\right\rceil$ (at most)
- Runtime of merge operation for each node in level $i: O\left(\frac{n}{2^{i-1}}\right)$

Number of Levels:

- Array length in last level / is $1:\left\lceil\frac{n}{\left.2^{l-1}\right\rceil}=1\right.$

$$
\frac{n}{2^{I-1}} \leq 1
$$

Number of Levels (2)

Level i :

- 2^{i-1} nodes (at most)
- Array length in level i is $\left\lceil\frac{n}{2^{i-1}}\right\rceil$ (at most)
- Runtime of merge operation for each node in level $i: O\left(\frac{n}{2^{i-1}}\right)$

Number of Levels:

- Array length in last level / is $1:\left\lceil\frac{n}{\left.2^{l-1}\right\rceil=1}\right.$

$$
\frac{n}{2^{I-1}} \leq 1 \Rightarrow n \leq 2^{I-1}
$$

Number of Levels (2)

Level i :

- 2^{i-1} nodes (at most)
- Array length in level i is $\left\lceil\frac{n}{2^{i-1}}\right\rceil$ (at most)
- Runtime of merge operation for each node in level $i: O\left(\frac{n}{2^{i-1}}\right)$

Number of Levels:

- Array length in last level / is $1:\left\lceil\frac{n}{\left.2^{l-1}\right\rceil=1}\right.$

$$
\frac{n}{2^{I-1}} \leq 1 \Rightarrow n \leq 2^{I-1} \Rightarrow \log (n)+1 \leq 1
$$

Number of Levels (2)

Level i :

- 2^{i-1} nodes (at most)
- Array length in level i is $\left\lceil\frac{n}{2^{i-1}}\right\rceil$ (at most)
- Runtime of merge operation for each node in level i : $O\left(\frac{n}{2^{i-1}}\right)$

Number of Levels:

- Array length in last level / is $1:\left\lceil\frac{n}{\left.2^{l-1}\right\rceil=1}\right.$

$$
\frac{n}{2^{I-1}} \leq 1 \Rightarrow n \leq 2^{I-1} \Rightarrow \log (n)+1 \leq 1
$$

- Array length in last but one level $I-1$ is 2 :

Number of Levels (2)

Level i :

- 2^{i-1} nodes (at most)
- Array length in level i is $\left\lceil\frac{n}{2^{i-1}}\right\rceil$ (at most)
- Runtime of merge operation for each node in level i : $O\left(\frac{n}{2^{i-1}}\right)$

Number of Levels:

- Array length in last level $/$ is $1:\left\lceil\frac{n}{\left.2^{I-1}\right\rceil}\right\rceil=1$

$$
\frac{n}{2^{I-1}} \leq 1 \Rightarrow n \leq 2^{I-1} \Rightarrow \log (n)+1 \leq 1
$$

- Array length in last but one level $I-1$ is $2:\left\lceil\frac{n}{2^{I-2}}\right\rceil=2$

$$
\frac{n}{2^{I-2}}>1
$$

Number of Levels (2)

Level i :

- 2^{i-1} nodes (at most)
- Array length in level i is $\left\lceil\frac{n}{2^{i-1}}\right\rceil$ (at most)
- Runtime of merge operation for each node in level i : $O\left(\frac{n}{2^{i-1}}\right)$

Number of Levels:

- Array length in last level $/$ is $1:\left\lceil\frac{n}{\left.2^{I-1}\right\rceil}\right\rceil=1$

$$
\frac{n}{2^{I-1}} \leq 1 \Rightarrow n \leq 2^{I-1} \Rightarrow \log (n)+1 \leq 1
$$

- Array length in last but one level $I-1$ is $2:\left\lceil\frac{n}{2^{I-2}}\right\rceil=2$

$$
\frac{n}{2^{I-2}}>1 \Rightarrow n>2^{I-2}
$$

Number of Levels (2)

Level i :

- 2^{i-1} nodes (at most)
- Array length in level i is $\left\lceil\frac{n}{2^{i-1}}\right\rceil$ (at most)
- Runtime of merge operation for each node in level i : $O\left(\frac{n}{2^{i-1}}\right)$

Number of Levels:

- Array length in last level $/$ is $1:\left\lceil\frac{n}{\left.2^{l-1}\right\rceil}\right\rceil=1$

$$
\frac{n}{2^{I-1}} \leq 1 \Rightarrow n \leq 2^{I-1} \Rightarrow \log (n)+1 \leq 1
$$

- Array length in last but one level $I-1$ is $2:\left\lceil\frac{n}{2^{I-2}}\right\rceil=2$

$$
\frac{n}{2^{I-2}}>1 \Rightarrow n>2^{I-2} \Rightarrow \log (n)+2>1
$$

Number of Levels (2)

Level i :

- 2^{i-1} nodes (at most)
- Array length in level i is $\left\lceil\frac{n}{2^{i-1}}\right\rceil$ (at most)
- Runtime of merge operation for each node in level i : $O\left(\frac{n}{2^{i-1}}\right)$

Number of Levels:

- Array length in last level $/$ is $1:\left\lceil\frac{n}{\left.2^{I-1}\right\rceil}\right\rceil=1$

$$
\frac{n}{2^{I-1}} \leq 1 \Rightarrow n \leq 2^{I-1} \Rightarrow \log (n)+1 \leq 1
$$

- Array length in last but one level $I-1$ is $2:\left\lceil\frac{n}{2^{I-2}}\right\rceil=2$

$$
\begin{aligned}
& \frac{n}{2^{\prime-2}}>1 \Rightarrow n>2^{I-2} \Rightarrow \log (n)+2>1 \\
& \quad \log (n)+1 \leq 1<\log (n)+2
\end{aligned}
$$

Number of Levels (2)

Level i :

- 2^{i-1} nodes (at most)
- Array length in level i is $\left\lceil\frac{n}{2^{i-1}}\right\rceil$ (at most)
- Runtime of merge operation for each node in level i : $O\left(\frac{n}{2^{i-1}}\right)$

Number of Levels:

- Array length in last level / is $1:\left\lceil\frac{n}{\left.2^{l-1}\right\rceil}=1\right.$

$$
\frac{n}{2^{I-1}} \leq 1 \Rightarrow n \leq 2^{I-1} \Rightarrow \log (n)+1 \leq 1
$$

- Array length in last but one level $I-1$ is $2:\left\lceil\frac{n}{2^{I-2}}\right\rceil=2$

$$
\begin{aligned}
& \frac{n}{2^{I-2}}>1 \Rightarrow n>2^{I-2} \Rightarrow \log (n)+2>1 \\
& \quad \log (n)+1 \leq I<\log (n)+2
\end{aligned}
$$

Hence, $I=\lceil\log n\rceil+1$.

Runtime of Merge Sort

Sum up Work:

- Levels:

$$
I=\lceil\log n\rceil+1
$$

- Nodes on level i : at most 2^{i-1}
- Array length in level i : at most $\left\lceil\frac{n}{2^{i-1}}\right\rceil$

Runtime of Merge Sort

Sum up Work:

- Levels:

$$
I=\lceil\log n\rceil+1
$$

- Nodes on level i : at most 2^{i-1}
- Array length in level i : at most $\left\lceil\frac{n}{2^{i-1}}\right\rceil$

Worst-case Runtime:

Runtime of Merge Sort

Sum up Work:

- Levels:

$$
I=\lceil\log n\rceil+1
$$

- Nodes on level i : at most 2^{i-1}
- Array length in level i : at most $\left\lceil\frac{n}{2^{i-1}}\right\rceil$

Worst-case Runtime:

$$
\sum_{i=1}^{\lceil\log n\rceil+1} 2^{i-1} O\left(\left\lceil\frac{n}{2^{i-1}}\right\rceil\right)
$$

Runtime of Merge Sort

Sum up Work:

- Levels:

$$
I=\lceil\log n\rceil+1
$$

- Nodes on level i : at most 2^{i-1}
- Array length in level i : at most $\left\lceil\frac{n}{2^{i-1}}\right\rceil$

Worst-case Runtime:

$$
\sum_{i=1}^{\lceil\log n\rceil+1} 2^{i-1} O\left(\left\lceil\frac{n}{2^{i-1}}\right\rceil\right)=\sum_{i=1}^{\lceil\log n\rceil+1} 2^{i-1} O\left(\frac{n}{2^{i-1}}\right)
$$

Runtime of Merge Sort

Sum up Work:

- Levels:

$$
I=\lceil\log n\rceil+1
$$

- Nodes on level i : at most 2^{i-1}
- Array length in level i : at most $\left\lceil\frac{n}{2^{i-1}}\right\rceil$

Worst-case Runtime:

$$
\begin{aligned}
& \sum_{i=1}^{\lceil\log n\rceil+1} 2^{i-1} O\left(\left\lceil\frac{n}{2^{i-1}}\right\rceil\right)=\sum_{i=1}^{\lceil\log n\rceil+1} 2^{i-1} O\left(\frac{n}{2^{i-1}}\right) \\
& \quad=\sum_{i=1}^{\lceil\log n\rceil+1} O(n)
\end{aligned}
$$

Runtime of Merge Sort

Sum up Work:

- Levels:

$$
I=\lceil\log n\rceil+1
$$

- Nodes on level i : at most 2^{i-1}
- Array length in level i : at most $\left\lceil\frac{n}{2^{i-1}}\right\rceil$

Worst-case Runtime:

$$
\begin{gathered}
\sum_{i=1}^{\lceil\log n\rceil+1} 2^{i-1} O\left(\left\lceil\frac{n}{2^{i-1}}\right\rceil\right)=\sum_{i=1}^{\lceil\log n\rceil+1} 2^{i-1} O\left(\frac{n}{2^{i-1}}\right) \\
=\sum_{i=1}^{\lceil\log n\rceil+1} O(n)=(\lceil\log n\rceil+1) O(n)
\end{gathered}
$$

Runtime of Merge Sort

Sum up Work:

- Levels:

$$
I=\lceil\log n\rceil+1
$$

- Nodes on level i : at most 2^{i-1}
- Array length in level i : at most $\left\lceil\frac{n}{2^{i-1}}\right\rceil$

Worst-case Runtime:

$$
\begin{aligned}
& \sum_{i=1}^{\lceil\log n\rceil+1} 2^{i-1} O\left(\left\lceil\frac{n}{\left.\left.2^{i-1}\right\rceil\right)=\sum_{i=1}^{\lceil\log n\rceil+1} 2^{i-1} O\left(\frac{n}{2^{i-1}}\right)}\right.\right. \\
& \quad=\sum_{i=1}^{\lceil\log n\rceil+1} O(n)=(\lceil\log n\rceil+1) O(n)=O(n \log n)
\end{aligned}
$$

Merge sort in Practice on Worst-case Instances

Stability and In Place Property?

- Merge sort is stable

Stability and In Place Property?

Stability and In Place Property?

- Merge sort is stable
- Merge sort does not sort in place

Generalizing the Analysis

Divide and Conquer Algorithm:

Generalizing the Analysis

Divide and Conquer Algorithm:

Let \mathbf{A} be a divide and conquer algorithm with the following properties:

Generalizing the Analysis

Divide and Conquer Algorithm:

Let \mathbf{A} be a divide and conquer algorithm with the following properties:
(1) A performs two recursive calls on input sizes at most $n / 2$

Generalizing the Analysis

Divide and Conquer Algorithm:

Let \mathbf{A} be a divide and conquer algorithm with the following properties:
(1) A performs two recursive calls on input sizes at most $n / 2$
(2) The conquer operation in \mathbf{A} takes $O(n)$ time

Generalizing the Analysis

Divide and Conquer Algorithm:

Let \mathbf{A} be a divide and conquer algorithm with the following properties:
(1) A performs two recursive calls on input sizes at most $n / 2$
(2) The conquer operation in \mathbf{A} takes $O(n)$ time Then:

Generalizing the Analysis

Divide and Conquer Algorithm:

Let \mathbf{A} be a divide and conquer algorithm with the following properties:
(1) A performs two recursive calls on input sizes at most $n / 2$
(2) The conquer operation in \mathbf{A} takes $O(n)$ time

Then:

A has a runtime of $O(n \log n)$.

