The Maximum Subarray Problem COMS10017 - Algorithms 1

Dr Christian Konrad

Generalizing the Analysis

Divide and Conquer Algorithm:

Generalizing the Analysis

Divide and Conquer Algorithm:

Let \mathbf{A} be a divide and conquer algorithm with the following properties:

Generalizing the Analysis

Divide and Conquer Algorithm:

Let \mathbf{A} be a divide and conquer algorithm with the following properties:
(1) A performs two recursive calls on input sizes at most $n / 2$

Generalizing the Analysis

Divide and Conquer Algorithm:

Let \mathbf{A} be a divide and conquer algorithm with the following properties:
(1) A performs two recursive calls on input sizes at most $n / 2$
(2) The combine operation in \mathbf{A} takes $O(n)$ time

Generalizing the Analysis

Divide and Conquer Algorithm:

Let \mathbf{A} be a divide and conquer algorithm with the following properties:
(1) A performs two recursive calls on input sizes at most $n / 2$
(2) The combine operation in \mathbf{A} takes $O(n)$ time

Then:

Generalizing the Analysis

Divide and Conquer Algorithm:

Let \mathbf{A} be a divide and conquer algorithm with the following properties:
(1) A performs two recursive calls on input sizes at most $n / 2$
(2) The combine operation in \mathbf{A} takes $O(n)$ time

Then:

A has a runtime of $O(n \log n)$.

Maximum Subarray Problem

Buy Low, Sell High Problem

- Input: An array of n integers
- Output: Indices $0 \leq i<j \leq n-1$ such that $A[j]-A[i]$ is maximized

Maximum Subarray Problem

Buy Low, Sell High Problem

- Input: An array of n integers
- Output: Indices $0 \leq i<j \leq n-1$ such that $A[j]-A[i]$ is maximized

Maximum Subarray Problem

Focus on Array of Changes:

Day	0	1	2	3	4	5	6	7	8	9	10	11
$\$$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

Focus on Array of Changes:

Day	0	1	2	3	4	5	6	7	8	9	10	11
$\$$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

Focus on Array of Changes:

Day	0	1	2	3	4	5	6	7	8	9	10	11
$\$$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

- Input: Array A of n numbers
- Output: Indices $0 \leq i \leq j \leq n-1$ such that $\sum_{l=i}^{j} A[/]$ is maximum.

Maximum Subarray Problem

Focus on Array of Changes:

Day	0	1	2	3	4	5	6	7	8	9	10	11
$\$$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

- Input: Array A of n numbers
- Output: Indices $0 \leq i \leq j \leq n-1$ such that $\sum_{l=i}^{j} A[/]$ is maximum.

Trivial Solution: $O\left(n^{3}\right)$ runtime

Maximum Subarray Problem

Focus on Array of Changes:

Day	0	1	2	3	4	5	6	7	8	9	10	11
$\$$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

- Input: Array A of n numbers
- Output: Indices $0 \leq i \leq j \leq n-1$ such that $\sum_{l=i}^{j} A[/]$ is maximum.

Trivial Solution: $O\left(n^{3}\right)$ runtime

- Compute subarrays for every pair i, j

Maximum Subarray Problem

Focus on Array of Changes:

Day	0	1	2	3	4	5	6	7	8	9	10	11
$\$$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

- Input: Array A of n numbers
- Output: Indices $0 \leq i \leq j \leq n-1$ such that $\sum_{l=i}^{j} A[/]$ is maximum.

Trivial Solution: $O\left(n^{3}\right)$ runtime

- Compute subarrays for every pair i, j
- There are $O\left(n^{2}\right)$ pairs, computing the sum takes time $O(n)$.

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:
Compute maximum subarrays in left and right halves of initial array

$$
A=L \circ R
$$

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:
Compute maximum subarrays in left and right halves of initial array

$$
A=L \circ R
$$

Combine:

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

$$
A=L \circ R
$$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

$$
A=L \circ R
$$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Three cases:

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

$$
A=L \circ R
$$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Three cases:

(1) Maximum subarray is entirely included in L \checkmark

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

$$
A=L \circ R
$$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Three cases:

(1) Maximum subarray is entirely included in $L \checkmark$
(2) Maximum subarray is entirely included in $R \checkmark$

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

$$
A=L \circ R
$$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Three cases:

(1) Maximum subarray is entirely included in $L \checkmark$
(2) Maximum subarray is entirely included in $R \checkmark$
(3) Maximum subarray crosses midpoint, i.e., i is included in L and j is included in R

Divide and Conquer Algorithm for Maximum Subarray

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

- Find maximum subarray $A[i, j]$ such that $i \leq \frac{n}{2}$ and $j>\frac{n}{2}$ (assume that n is even)

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

- Find maximum subarray $A[i, j]$ such that $i \leq \frac{n}{2}$ and $j>\frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l]=\sum_{l=i}^{\frac{n}{2}} A[i]+\sum_{l=\frac{n}{2}+1}^{j} A[I]$.

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

- Find maximum subarray $A[i, j]$ such that $i \leq \frac{n}{2}$ and $j>\frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l]=\sum_{l=i}^{\frac{n}{2}} A[i]+\sum_{l=\frac{n}{2}+1}^{j} A[l]$.

Two Independent Subproblems:

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

- Find maximum subarray $A[i, j]$ such that $i \leq \frac{n}{2}$ and $j>\frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l]=\sum_{l=i}^{\frac{n}{2}} A[i]+\sum_{l=\frac{n}{2}+1}^{j} A[l]$.

Two Independent Subproblems:

- Find index i such that $\sum_{l=i}^{\frac{n}{2}} A[i]$ is maximized

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

- Find maximum subarray $A[i, j]$ such that $i \leq \frac{n}{2}$ and $j>\frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l]=\sum_{l=i}^{\frac{n}{2}} A[i]+\sum_{l=\frac{n}{2}+1}^{j} A[I]$.

Two Independent Subproblems:

- Find index i such that $\sum_{l=i}^{\frac{n}{2}} A[i]$ is maximized
- Find index j such that $\sum_{l=\frac{n}{2}+1}^{j} A[/]$ is maximized

Divide and Conquer Algorithm for Maximum Subarray

Maximum Subarray Crosses Midpoint:

- Find maximum subarray $A[i, j]$ such that $i \leq \frac{n}{2}$ and $j>\frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l]=\sum_{l=i}^{\frac{n}{2}} A[i]+\sum_{l=\frac{n}{2}+1}^{j} A[I]$.

Two Independent Subproblems:

- Find index i such that $\sum_{l=i}^{\frac{n}{2}} A[i]$ is maximized
- Find index j such that $\sum_{l=\frac{n}{2}+1}^{j} A[/]$ is maximized

We can solve these subproblems in time $O(n)$. (how?)

Maximum Subarray Problem - Summary

Require: Array A of n numbers
if $n=1$ then

return A

Recursively compute max. subarray S_{1} in $A\left[0,\left\lfloor\frac{n}{2}\right\rfloor\right]$
Recursively compute max. subarray S_{2} in $A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right]$
Compute maximum subarray S_{3} that crosses midpoint return Heaviest of the three subarrays S_{1}, S_{2}, S_{3}
Recursive Algorithm for the Maximum Subarray Problem

Maximum Subarray Problem - Summary

Require: Array A of n numbers
if $n=1$ then

return A

Recursively compute max. subarray S_{1} in $A\left[0,\left\lfloor\frac{n}{2}\right\rfloor\right]$
Recursively compute max. subarray S_{2} in $A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right]$
Compute maximum subarray S_{3} that crosses midpoint return Heaviest of the three subarrays S_{1}, S_{2}, S_{3}
Recursive Algorithm for the Maximum Subarray Problem
Analysis:

Maximum Subarray Problem - Summary

Require: Array A of n numbers
if $n=1$ then
return A
Recursively compute max. subarray S_{1} in $A\left[0,\left\lfloor\frac{n}{2}\right\rfloor\right]$
Recursively compute max. subarray S_{2} in $A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right]$
Compute maximum subarray S_{3} that crosses midpoint return Heaviest of the three subarrays S_{1}, S_{2}, S_{3}
Recursive Algorithm for the Maximum Subarray Problem
Analysis:

- Two recursive calls with inputs that are only half the size

Maximum Subarray Problem - Summary

Require: Array A of n numbers
if $n=1$ then
return A
Recursively compute max. subarray S_{1} in $A\left[0,\left\lfloor\frac{n}{2}\right\rfloor\right]$
Recursively compute max. subarray S_{2} in $A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right]$ Compute maximum subarray S_{3} that crosses midpoint return Heaviest of the three subarrays S_{1}, S_{2}, S_{3}
Recursive Algorithm for the Maximum Subarray Problem
Analysis:

- Two recursive calls with inputs that are only half the size
- Conquer step requires $O(n)$ time

Maximum Subarray Problem - Summary

Require: Array A of n numbers
if $n=1$ then
return A
Recursively compute max. subarray S_{1} in $A\left[0,\left\lfloor\frac{n}{2}\right\rfloor\right]$
Recursively compute max. subarray S_{2} in $A\left[\left\lfloor\frac{n}{2}\right\rfloor+1, n-1\right]$ Compute maximum subarray S_{3} that crosses midpoint return Heaviest of the three subarrays S_{1}, S_{2}, S_{3}
Recursive Algorithm for the Maximum Subarray Problem
Analysis:

- Two recursive calls with inputs that are only half the size
- Conquer step requires $O(n)$ time
- Identical to Merge Sort, runtime $O(n \log n)$!

