The Maximum Subarray Problem COMS10017 - Algorithms 1

Dr Christian Konrad

Divide and Conquer Algorithm:

Divide and Conquer Algorithm:

Let **A** be a divide and conquer algorithm with the following properties:

Divide and Conquer Algorithm:

Let **A** be a divide and conquer algorithm with the following properties:

1 A performs two recursive calls on input sizes at most n/2

Divide and Conquer Algorithm:

Let **A** be a divide and conquer algorithm with the following properties:

- **1** A performs two recursive calls on input sizes at most n/2
- ② The combine operation in **A** takes O(n) time

Divide and Conquer Algorithm:

Let **A** be a divide and conquer algorithm with the following properties:

- **1** A performs two recursive calls on input sizes at most n/2
- ② The combine operation in **A** takes O(n) time

Then:

Divide and Conquer Algorithm:

Let **A** be a divide and conquer algorithm with the following properties:

- **1** A performs two recursive calls on input sizes at most n/2
- ② The combine operation in **A** takes O(n) time

Then:

A has a runtime of $O(n \log n)$.

Buy Low, Sell High Problem

- **Input:** An array of *n* integers
- **Output:** Indices $0 \le i < j \le n-1$ such that A[j] A[i] is maximized

Buy Low, Sell High Problem

- **Input:** An array of *n* integers
- **Output:** Indices $0 \le i < j \le n-1$ such that A[j] A[i] is maximized

Focus on Array of Changes:

Day												
-\$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Focus on Array of Changes:

Day												
	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Focus on Array of Changes:

Day												
-\$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

- **Input:** Array *A* of *n* numbers
- **Output:** Indices $0 \le i \le j \le n-1$ such that $\sum_{l=i}^{j} A[l]$ is maximum.

Focus on Array of Changes:

Day												
	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

- **Input:** Array *A* of *n* numbers
- **Output:** Indices $0 \le i \le j \le n-1$ such that $\sum_{l=i}^{j} A[l]$ is maximum.

Trivial Solution: $O(n^3)$ runtime

Focus on Array of Changes:

Day												
-\$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

- **Input:** Array *A* of *n* numbers
- **Output:** Indices $0 \le i \le j \le n-1$ such that $\sum_{l=i}^{j} A[l]$ is maximum.

Trivial Solution: $O(n^3)$ runtime

ullet Compute subarrays for every pair i, j

Focus on Array of Changes:

Day												
-\$	100	113	110	85	105	102	86	63	81	101	94	106
Δ		13	-3	-25	20	-3	-16	-23	18	20	-7	12

Maximum Subarray Problem

- **Input:** Array *A* of *n* numbers
- **Output:** Indices $0 \le i \le j \le n-1$ such that $\sum_{l=i}^{j} A[l]$ is maximum.

Trivial Solution: $O(n^3)$ runtime

- ullet Compute subarrays for every pair i, j
- ullet There are $O(n^2)$ pairs, computing the sum takes time O(n) .

Divide and Conquer:

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

$$A = L \circ R$$

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

$$A = L \circ R$$

Combine:

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

$$A = L \circ R$$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

$$A = L \circ R$$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Three cases:

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

$$A = L \circ R$$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Three cases:

 $\textbf{ 0} \ \ \mathsf{Maximum} \ \mathsf{subarray} \ \mathsf{is} \ \mathsf{entirely} \ \mathsf{included} \ \mathsf{in} \ \mathit{L} \ \checkmark$

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

$$A = L \circ R$$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Three cases:

- **1** Maximum subarray is entirely included in $L \checkmark$
- ② Maximum subarray is entirely included in $R \checkmark$

Divide and Conquer:

Compute maximum subarrays in left and right halves of initial array

$$A = L \circ R$$

Combine:

Given maximum subarrays in L and R, we need to compute maximum subarray in A

Three cases:

- **1** Maximum subarray is entirely included in $L \checkmark$
- **2** Maximum subarray is entirely included in $R \checkmark$
- **3** Maximum subarray crosses midpoint, i.e., i is included in L and j is included in R

Maximum Subarray Crosses Midpoint:

Maximum Subarray Crosses Midpoint:

• Find maximum subarray A[i,j] such that $i \leq \frac{n}{2}$ and $j > \frac{n}{2}$ (assume that n is even)

Maximum Subarray Crosses Midpoint:

- Find maximum subarray A[i,j] such that $i \leq \frac{n}{2}$ and $j > \frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l] = \sum_{l=i}^{\frac{n}{2}} A[i] + \sum_{l=\frac{n}{2}+1}^{j} A[l]$.

Maximum Subarray Crosses Midpoint:

- Find maximum subarray A[i,j] such that $i \leq \frac{n}{2}$ and $j > \frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l] = \sum_{l=i}^{\frac{n}{2}} A[i] + \sum_{l=\frac{n}{2}+1}^{j} A[l]$.

Two Independent Subproblems:

Maximum Subarray Crosses Midpoint:

- Find maximum subarray A[i,j] such that $i \leq \frac{n}{2}$ and $j > \frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l] = \sum_{l=i}^{\frac{n}{2}} A[i] + \sum_{l=\frac{n}{2}+1}^{j} A[l]$.

Two Independent Subproblems:

• Find index i such that $\sum_{l=i}^{\frac{n}{2}} A[i]$ is maximized

Maximum Subarray Crosses Midpoint:

- Find maximum subarray A[i,j] such that $i \leq \frac{n}{2}$ and $j > \frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l] = \sum_{l=i}^{\frac{n}{2}} A[i] + \sum_{l=\frac{n}{2}+1}^{j} A[l]$.

Two Independent Subproblems:

- Find index i such that $\sum_{l=i}^{\frac{n}{2}} A[i]$ is maximized
- Find index j such that $\sum_{l=\frac{n}{2}+1}^{j} A[l]$ is maximized

Maximum Subarray Crosses Midpoint:

- Find maximum subarray A[i,j] such that $i \leq \frac{n}{2}$ and $j > \frac{n}{2}$ (assume that n is even)
- Observe that: $\sum_{l=i}^{j} A[l] = \sum_{l=i}^{\frac{n}{2}} A[i] + \sum_{l=\frac{n}{2}+1}^{j} A[l]$.

Two Independent Subproblems:

- Find index i such that $\sum_{l=i}^{\frac{n}{2}} A[i]$ is maximized
- Find index j such that $\sum_{l=\frac{n}{2}+1}^{j} A[l]$ is maximized

We can solve these subproblems in time O(n). (how?)

```
Require: Array A of n numbers if n=1 then return A
Recursively compute max. subarray S_1 in A[0,\lfloor \frac{n}{2} \rfloor]
Recursively compute max. subarray S_2 in A[\lfloor \frac{n}{2} \rfloor + 1, n-1]
Compute maximum subarray S_3 that crosses midpoint return Heaviest of the three subarrays S_1, S_2, S_3
```

Recursive Algorithm for the Maximum Subarray Problem

```
Require: Array A of n numbers if n=1 then return A
Recursively compute max. subarray S_1 in A[0,\lfloor \frac{n}{2} \rfloor]
Recursively compute max. subarray S_2 in A[\lfloor \frac{n}{2} \rfloor + 1, n-1]
Compute maximum subarray S_3 that crosses midpoint return Heaviest of the three subarrays S_1, S_2, S_3
```

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

```
Require: Array A of n numbers if n=1 then return A
Recursively compute max. subarray S_1 in A[0, \lfloor \frac{n}{2} \rfloor]
Recursively compute max. subarray S_2 in A[\lfloor \frac{n}{2} \rfloor + 1, n-1]
Compute maximum subarray S_3 that crosses midpoint return Heaviest of the three subarrays S_1, S_2, S_3
```

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

• Two recursive calls with inputs that are only half the size

```
Require: Array A of n numbers if n=1 then return A
Recursively compute max. subarray S_1 in A[0,\lfloor \frac{n}{2} \rfloor]
Recursively compute max. subarray S_2 in A[\lfloor \frac{n}{2} \rfloor + 1, n-1]
Compute maximum subarray S_3 that crosses midpoint return Heaviest of the three subarrays S_1, S_2, S_3
```

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

- Two recursive calls with inputs that are only half the size
- Conquer step requires O(n) time

```
Require: Array A of n numbers if n=1 then return A
Recursively compute max. subarray S_1 in A[0, \lfloor \frac{n}{2} \rfloor]
Recursively compute max. subarray S_2 in A[\lfloor \frac{n}{2} \rfloor + 1, n-1]
Compute maximum subarray S_3 that crosses midpoint return Heaviest of the three subarrays S_1, S_2, S_3
```

Recursive Algorithm for the Maximum Subarray Problem

Analysis:

- Two recursive calls with inputs that are only half the size
- Conquer step requires O(n) time
- Identical to Merge Sort, runtime $O(n \log n)!$