
Trees
COMS10017 - Algorithms 1

Dr Christian Konrad

Dr Christian Konrad Trees 1 / 7

Trees

Definition: A tree T = (V ,E) of size n is a tuple consisting of

V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , en−1}

with |V | = n and |E | = n − 1 with ei = {vj , vk} for some j ̸= k
s.t. for every pair of vertices vi , vj (i ̸= j), there is a path from
vi to vj . V are the nodes/vertices and E are the edges of T .

✓ ✓ ✗

Dr Christian Konrad Trees 2 / 7

Trees

Definition: A tree T = (V ,E) of size n is a tuple consisting of

V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , en−1}

with |V | = n and |E | = n − 1 with ei = {vj , vk} for some j ̸= k
s.t. for every pair of vertices vi , vj (i ̸= j), there is a path from
vi to vj . V are the nodes/vertices and E are the edges of T .

✓

✓ ✗

Dr Christian Konrad Trees 2 / 7

Trees

Definition: A tree T = (V ,E) of size n is a tuple consisting of

V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , en−1}

with |V | = n and |E | = n − 1 with ei = {vj , vk} for some j ̸= k
s.t. for every pair of vertices vi , vj (i ̸= j), there is a path from
vi to vj . V are the nodes/vertices and E are the edges of T .

✓ ✓

✗

Dr Christian Konrad Trees 2 / 7

Trees

Definition: A tree T = (V ,E) of size n is a tuple consisting of

V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , en−1}

with |V | = n and |E | = n − 1 with ei = {vj , vk} for some j ̸= k
s.t. for every pair of vertices vi , vj (i ̸= j), there is a path from
vi to vj . V are the nodes/vertices and E are the edges of T .

✓ ✓ ✗

Dr Christian Konrad Trees 2 / 7

Rooted Trees

Definition: (rooted tree) A rooted tree is a triple T = (v ,V ,E)
such that T = (V ,E) is a tree and v ∈ V is a designated node
that we call the root of T .

Definition: (leaf, internal node) A leaf in a tree is a node with
exactly one incident edge. A node that is not a leaf is called an
internal node.

Dr Christian Konrad Trees 3 / 7

Rooted Trees

Definition: (rooted tree) A rooted tree is a triple T = (v ,V ,E)
such that T = (V ,E) is a tree and v ∈ V is a designated node
that we call the root of T .

Definition: (leaf, internal node) A leaf in a tree is a node with
exactly one incident edge. A node that is not a leaf is called an
internal node.

Dr Christian Konrad Trees 3 / 7

Children, Parent, and Degree

Further Definitions:

The parent of a node v is the closest
node on a path from v to the root.
The root does not have a parent.

The children of a node v are v ’s
neighbours except its parent.

The height of a tree is the length of a longest root-to-leaf
path.

The degree deg(v) of a node v is the number of incident edges
to v . Since every edge is incident to two vertices we have∑

v∈V
deg(v) = 2 · |E | = 2(n − 1) .

The level of a vertex v is the length of the unique path from
the root to v plus 1.

Dr Christian Konrad Trees 4 / 7

Children, Parent, and Degree

Further Definitions:

The parent of a node v is the closest
node on a path from v to the root.
The root does not have a parent.

The children of a node v are v ’s
neighbours except its parent.

The height of a tree is the length of a longest root-to-leaf
path.

The degree deg(v) of a node v is the number of incident edges
to v . Since every edge is incident to two vertices we have∑

v∈V
deg(v) = 2 · |E | = 2(n − 1) .

The level of a vertex v is the length of the unique path from
the root to v plus 1.

Dr Christian Konrad Trees 4 / 7

Children, Parent, and Degree

Further Definitions:

The parent of a node v is the closest
node on a path from v to the root.
The root does not have a parent.

The children of a node v are v ’s
neighbours except its parent.

The height of a tree is the length of a longest root-to-leaf
path.

The degree deg(v) of a node v is the number of incident edges
to v . Since every edge is incident to two vertices we have∑

v∈V
deg(v) = 2 · |E | = 2(n − 1) .

The level of a vertex v is the length of the unique path from
the root to v plus 1.

Dr Christian Konrad Trees 4 / 7

Children, Parent, and Degree

Further Definitions:

The parent of a node v is the closest
node on a path from v to the root.
The root does not have a parent.

The children of a node v are v ’s
neighbours except its parent.

The height of a tree is the length of a longest root-to-leaf
path.

The degree deg(v) of a node v is the number of incident edges
to v . Since every edge is incident to two vertices we have∑

v∈V
deg(v) = 2 · |E | = 2(n − 1) .

The level of a vertex v is the length of the unique path from
the root to v plus 1.

Dr Christian Konrad Trees 4 / 7

Children, Parent, and Degree

Further Definitions:

The parent of a node v is the closest
node on a path from v to the root.
The root does not have a parent.

The children of a node v are v ’s
neighbours except its parent.

The height of a tree is the length of a longest root-to-leaf
path.

The degree deg(v) of a node v is the number of incident edges
to v . Since every edge is incident to two vertices we have∑

v∈V
deg(v) = 2 · |E | = 2(n − 1) .

The level of a vertex v is the length of the unique path from
the root to v plus 1.

Dr Christian Konrad Trees 4 / 7

Children, Parent, and Degree

Further Definitions:

The parent of a node v is the closest
node on a path from v to the root.
The root does not have a parent.

The children of a node v are v ’s
neighbours except its parent.

The height of a tree is the length of a longest root-to-leaf
path.

The degree deg(v) of a node v is the number of incident edges
to v . Since every edge is incident to two vertices we have∑

v∈V
deg(v) = 2 · |E | = 2(n − 1) .

The level of a vertex v is the length of the unique path from
the root to v plus 1.

Dr Christian Konrad Trees 4 / 7

Properties of Trees

Property:

Every tree has at least 2 leaves

Proof Let L ⊆ V be the subset of leaves. Suppose that there is at
most 1 leaf, i.e., |L| ≤ 1. Then:∑
v∈V

deg(v) =
∑
v∈L

deg(v) +
∑

v∈V \L

deg(v)

≥ |L| · 1 + (|V | − |L|) · 2 = 2|V | − |L| ≥ 2n − 1 ,

a contradiction to the fact that
∑

v∈V deg(v) = 2(n − 1) in every
tree.

Dr Christian Konrad Trees 5 / 7

Properties of Trees

Property: Every tree has at least 2 leaves

Proof Let L ⊆ V be the subset of leaves. Suppose that there is at
most 1 leaf, i.e., |L| ≤ 1. Then:∑
v∈V

deg(v) =
∑
v∈L

deg(v) +
∑

v∈V \L

deg(v)

≥ |L| · 1 + (|V | − |L|) · 2 = 2|V | − |L| ≥ 2n − 1 ,

a contradiction to the fact that
∑

v∈V deg(v) = 2(n − 1) in every
tree.

Dr Christian Konrad Trees 5 / 7

Properties of Trees

Property: Every tree has at least 2 leaves

Proof

Let L ⊆ V be the subset of leaves. Suppose that there is at
most 1 leaf, i.e., |L| ≤ 1. Then:∑
v∈V

deg(v) =
∑
v∈L

deg(v) +
∑

v∈V \L

deg(v)

≥ |L| · 1 + (|V | − |L|) · 2 = 2|V | − |L| ≥ 2n − 1 ,

a contradiction to the fact that
∑

v∈V deg(v) = 2(n − 1) in every
tree.

Dr Christian Konrad Trees 5 / 7

Properties of Trees

Property: Every tree has at least 2 leaves

Proof Let L ⊆ V be the subset of leaves.

Suppose that there is at
most 1 leaf, i.e., |L| ≤ 1. Then:∑
v∈V

deg(v) =
∑
v∈L

deg(v) +
∑

v∈V \L

deg(v)

≥ |L| · 1 + (|V | − |L|) · 2 = 2|V | − |L| ≥ 2n − 1 ,

a contradiction to the fact that
∑

v∈V deg(v) = 2(n − 1) in every
tree.

Dr Christian Konrad Trees 5 / 7

Properties of Trees

Property: Every tree has at least 2 leaves

Proof Let L ⊆ V be the subset of leaves. Suppose that there is at
most 1 leaf, i.e., |L| ≤ 1.

Then:∑
v∈V

deg(v) =
∑
v∈L

deg(v) +
∑

v∈V \L

deg(v)

≥ |L| · 1 + (|V | − |L|) · 2 = 2|V | − |L| ≥ 2n − 1 ,

a contradiction to the fact that
∑

v∈V deg(v) = 2(n − 1) in every
tree.

Dr Christian Konrad Trees 5 / 7

Properties of Trees

Property: Every tree has at least 2 leaves

Proof Let L ⊆ V be the subset of leaves. Suppose that there is at
most 1 leaf, i.e., |L| ≤ 1. Then:

∑
v∈V

deg(v) =
∑
v∈L

deg(v) +
∑

v∈V \L

deg(v)

≥ |L| · 1 + (|V | − |L|) · 2 = 2|V | − |L| ≥ 2n − 1 ,

a contradiction to the fact that
∑

v∈V deg(v) = 2(n − 1) in every
tree.

Dr Christian Konrad Trees 5 / 7

Properties of Trees

Property: Every tree has at least 2 leaves

Proof Let L ⊆ V be the subset of leaves. Suppose that there is at
most 1 leaf, i.e., |L| ≤ 1. Then:∑
v∈V

deg(v)

=
∑
v∈L

deg(v) +
∑

v∈V \L

deg(v)

≥ |L| · 1 + (|V | − |L|) · 2 = 2|V | − |L| ≥ 2n − 1 ,

a contradiction to the fact that
∑

v∈V deg(v) = 2(n − 1) in every
tree.

Dr Christian Konrad Trees 5 / 7

Properties of Trees

Property: Every tree has at least 2 leaves

Proof Let L ⊆ V be the subset of leaves. Suppose that there is at
most 1 leaf, i.e., |L| ≤ 1. Then:∑
v∈V

deg(v) =
∑
v∈L

deg(v) +
∑

v∈V \L

deg(v)

≥ |L| · 1 + (|V | − |L|) · 2 = 2|V | − |L| ≥ 2n − 1 ,

a contradiction to the fact that
∑

v∈V deg(v) = 2(n − 1) in every
tree.

Dr Christian Konrad Trees 5 / 7

Properties of Trees

Property: Every tree has at least 2 leaves

Proof Let L ⊆ V be the subset of leaves. Suppose that there is at
most 1 leaf, i.e., |L| ≤ 1. Then:∑
v∈V

deg(v) =
∑
v∈L

deg(v) +
∑

v∈V \L

deg(v)

≥ |L| · 1 + (|V | − |L|) · 2

= 2|V | − |L| ≥ 2n − 1 ,

a contradiction to the fact that
∑

v∈V deg(v) = 2(n − 1) in every
tree.

Dr Christian Konrad Trees 5 / 7

Properties of Trees

Property: Every tree has at least 2 leaves

Proof Let L ⊆ V be the subset of leaves. Suppose that there is at
most 1 leaf, i.e., |L| ≤ 1. Then:∑
v∈V

deg(v) =
∑
v∈L

deg(v) +
∑

v∈V \L

deg(v)

≥ |L| · 1 + (|V | − |L|) · 2 = 2|V | − |L| ≥

2n − 1 ,

a contradiction to the fact that
∑

v∈V deg(v) = 2(n − 1) in every
tree.

Dr Christian Konrad Trees 5 / 7

Properties of Trees

Property: Every tree has at least 2 leaves

Proof Let L ⊆ V be the subset of leaves. Suppose that there is at
most 1 leaf, i.e., |L| ≤ 1. Then:∑
v∈V

deg(v) =
∑
v∈L

deg(v) +
∑

v∈V \L

deg(v)

≥ |L| · 1 + (|V | − |L|) · 2 = 2|V | − |L| ≥ 2n − 1 ,

a contradiction to the fact that
∑

v∈V deg(v) = 2(n − 1) in every
tree.

Dr Christian Konrad Trees 5 / 7

Properties of Trees

Property: Every tree has at least 2 leaves

Proof Let L ⊆ V be the subset of leaves. Suppose that there is at
most 1 leaf, i.e., |L| ≤ 1. Then:∑
v∈V

deg(v) =
∑
v∈L

deg(v) +
∑

v∈V \L

deg(v)

≥ |L| · 1 + (|V | − |L|) · 2 = 2|V | − |L| ≥ 2n − 1 ,

a contradiction to the fact that
∑

v∈V deg(v) = 2(n − 1) in every
tree.

Dr Christian Konrad Trees 5 / 7

Binary Trees

Definition: (k-ary tree) A (rooted) tree is k-ary if every node
has at most k children. If k = 2 then the tree is called binary.
A k ary tree is

full if every internal node has exactly k children,

complete if all levels except possibly the last is entirely
filled (and last level is filled from left to right),

perfect if all levels are entirely filled.

complete 3-ary tree full 3-ary tree perfect binary tree

Dr Christian Konrad Trees 6 / 7

Binary Trees

Definition: (k-ary tree) A (rooted) tree is k-ary if every node
has at most k children. If k = 2 then the tree is called binary.
A k ary tree is

full if every internal node has exactly k children,

complete if all levels except possibly the last is entirely
filled (and last level is filled from left to right),

perfect if all levels are entirely filled.

complete 3-ary tree full 3-ary tree perfect binary tree

Dr Christian Konrad Trees 6 / 7

Height of Perfect and Complete k-ary Trees

Height of k-ary Trees

The number of nodes in a perfect k-ary tree of height i − 1 is

i−1∑
j=0

k j =
k i − 1

k − 1
.

In other words, a perfect k-ary tree on n nodes has height:

n =
k i − 1

k − 1

k i = n(k − 1) + 1

i = logk(n(k − 1) + 1) = O(logk n) .

Similarly, a complete k-ary tree has height O(logk n).

Remark: The runtime of many algorithms that use tree data
structures depends on the height of these trees. We are therefore
interested in using complete/perfect trees.

Dr Christian Konrad Trees 7 / 7

Height of Perfect and Complete k-ary Trees

Height of k-ary Trees

The number of nodes in a perfect k-ary tree of height i − 1 is

i−1∑
j=0

k j =
k i − 1

k − 1
.

In other words, a perfect k-ary tree on n nodes has height:

n =
k i − 1

k − 1

k i = n(k − 1) + 1

i = logk(n(k − 1) + 1) = O(logk n) .

Similarly, a complete k-ary tree has height O(logk n).

Remark: The runtime of many algorithms that use tree data
structures depends on the height of these trees. We are therefore
interested in using complete/perfect trees.

Dr Christian Konrad Trees 7 / 7

Height of Perfect and Complete k-ary Trees

Height of k-ary Trees

The number of nodes in a perfect k-ary tree of height i − 1 is

i−1∑
j=0

k j =
k i − 1

k − 1
.

In other words, a perfect k-ary tree on n nodes has height:

n =
k i − 1

k − 1

k i = n(k − 1) + 1

i = logk(n(k − 1) + 1) = O(logk n) .

Similarly, a complete k-ary tree has height O(logk n).

Remark: The runtime of many algorithms that use tree data
structures depends on the height of these trees. We are therefore
interested in using complete/perfect trees.

Dr Christian Konrad Trees 7 / 7

Height of Perfect and Complete k-ary Trees

Height of k-ary Trees

The number of nodes in a perfect k-ary tree of height i − 1 is

i−1∑
j=0

k j =
k i − 1

k − 1
.

In other words, a perfect k-ary tree on n nodes has height:

n =
k i − 1

k − 1

k i = n(k − 1) + 1

i = logk(n(k − 1) + 1) = O(logk n) .

Similarly, a complete k-ary tree has height O(logk n).

Remark: The runtime of many algorithms that use tree data
structures depends on the height of these trees. We are therefore
interested in using complete/perfect trees.

Dr Christian Konrad Trees 7 / 7

Height of Perfect and Complete k-ary Trees

Height of k-ary Trees

The number of nodes in a perfect k-ary tree of height i − 1 is

i−1∑
j=0

k j =
k i − 1

k − 1
.

In other words, a perfect k-ary tree on n nodes has height:

n =
k i − 1

k − 1

k i = n(k − 1) + 1

i = logk(n(k − 1) + 1) = O(logk n) .

Similarly, a complete k-ary tree has height O(logk n).

Remark: The runtime of many algorithms that use tree data
structures depends on the height of these trees. We are therefore
interested in using complete/perfect trees.

Dr Christian Konrad Trees 7 / 7

