
Heap Sort
COMS10017 - Algorithms 1

Dr Christian Konrad

Dr Christian Konrad Heap Sort 1 / 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far

Insertion-Sort: O(n2) in worst case, in place, stable

Merge-Sort: O(n log n) in worst case, NOT in place, stable

Heap Sort (best of the two)

O(n log n) in worst case, in place, NOT stable

Uses a heap data structure (a heap is special tree)

Data Structures

Data storage format that allows for efficient access and
modification

Building block of many efficient algorithms

For example, an array is a data structure

Dr Christian Konrad Heap Sort 2 / 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far

Insertion-Sort: O(n2) in worst case, in place, stable

Merge-Sort: O(n log n) in worst case, NOT in place, stable

Heap Sort (best of the two)

O(n log n) in worst case, in place, NOT stable

Uses a heap data structure (a heap is special tree)

Data Structures

Data storage format that allows for efficient access and
modification

Building block of many efficient algorithms

For example, an array is a data structure

Dr Christian Konrad Heap Sort 2 / 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far

Insertion-Sort: O(n2) in worst case, in place, stable

Merge-Sort: O(n log n) in worst case, NOT in place, stable

Heap Sort (best of the two)

O(n log n) in worst case, in place, NOT stable

Uses a heap data structure (a heap is special tree)

Data Structures

Data storage format that allows for efficient access and
modification

Building block of many efficient algorithms

For example, an array is a data structure

Dr Christian Konrad Heap Sort 2 / 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far

Insertion-Sort: O(n2) in worst case, in place, stable

Merge-Sort: O(n log n) in worst case, NOT in place, stable

Heap Sort (best of the two)

O(n log n) in worst case, in place, NOT stable

Uses a heap data structure (a heap is special tree)

Data Structures

Data storage format that allows for efficient access and
modification

Building block of many efficient algorithms

For example, an array is a data structure

Dr Christian Konrad Heap Sort 2 / 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far

Insertion-Sort: O(n2) in worst case, in place, stable

Merge-Sort: O(n log n) in worst case, NOT in place, stable

Heap Sort (best of the two)

O(n log n) in worst case, in place, NOT stable

Uses a heap data structure (a heap is special tree)

Data Structures

Data storage format that allows for efficient access and
modification

Building block of many efficient algorithms

For example, an array is a data structure

Dr Christian Konrad Heap Sort 2 / 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far

Insertion-Sort: O(n2) in worst case, in place, stable

Merge-Sort: O(n log n) in worst case, NOT in place, stable

Heap Sort (best of the two)

O(n log n) in worst case, in place, NOT stable

Uses a heap data structure (a heap is special tree)

Data Structures

Data storage format that allows for efficient access and
modification

Building block of many efficient algorithms

For example, an array is a data structure

Dr Christian Konrad Heap Sort 2 / 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far

Insertion-Sort: O(n2) in worst case, in place, stable

Merge-Sort: O(n log n) in worst case, NOT in place, stable

Heap Sort (best of the two)

O(n log n) in worst case, in place, NOT stable

Uses a heap data structure (a heap is special tree)

Data Structures

Data storage format that allows for efficient access and
modification

Building block of many efficient algorithms

For example, an array is a data structure

Dr Christian Konrad Heap Sort 2 / 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far

Insertion-Sort: O(n2) in worst case, in place, stable

Merge-Sort: O(n log n) in worst case, NOT in place, stable

Heap Sort (best of the two)

O(n log n) in worst case, in place, NOT stable

Uses a heap data structure (a heap is special tree)

Data Structures

Data storage format that allows for efficient access and
modification

Building block of many efficient algorithms

For example, an array is a data structure

Dr Christian Konrad Heap Sort 2 / 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far

Insertion-Sort: O(n2) in worst case, in place, stable

Merge-Sort: O(n log n) in worst case, NOT in place, stable

Heap Sort (best of the two)

O(n log n) in worst case, in place, NOT stable

Uses a heap data structure (a heap is special tree)

Data Structures

Data storage format that allows for efficient access and
modification

Building block of many efficient algorithms

For example, an array is a data structure

Dr Christian Konrad Heap Sort 2 / 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far

Insertion-Sort: O(n2) in worst case, in place, stable

Merge-Sort: O(n log n) in worst case, NOT in place, stable

Heap Sort (best of the two)

O(n log n) in worst case, in place, NOT stable

Uses a heap data structure (a heap is special tree)

Data Structures

Data storage format that allows for efficient access and
modification

Building block of many efficient algorithms

For example, an array is a data structure

Dr Christian Konrad Heap Sort 2 / 11

Priority Queues

Priority Queue:
Data structure that allows the following operations:

Build(.): Create data structure given a set of data items

Extract-Max(.): Remove the maximum element from the data
structure and return it

others...

Sorting using a Priority Queue

Dr Christian Konrad Heap Sort 3 / 11

Priority Queues

Priority Queue:
Data structure that allows the following operations:

Build(.): Create data structure given a set of data items

Extract-Max(.): Remove the maximum element from the data
structure and return it

others...

Sorting using a Priority Queue

Dr Christian Konrad Heap Sort 3 / 11

From Array to Tree

Interpretation of an Array as a Complete Binary Tree

Easy Navigation:

Parent of i : ⌊i/2⌋
Left/Right Child of i : 2i and 2i + 1

Dr Christian Konrad Heap Sort 4 / 11

From Array to Tree

Interpretation of an Array as a Complete Binary Tree

Easy Navigation:

Parent of i : ⌊i/2⌋
Left/Right Child of i : 2i and 2i + 1

Dr Christian Konrad Heap Sort 4 / 11

From Array to Tree

Interpretation of an Array as a Complete Binary Tree

Easy Navigation:

Parent of i : ⌊i/2⌋
Left/Right Child of i : 2i and 2i + 1

Dr Christian Konrad Heap Sort 4 / 11

From Array to Tree

Interpretation of an Array as a Complete Binary Tree

Easy Navigation:

Parent of i : ⌊i/2⌋

Left/Right Child of i : 2i and 2i + 1

Dr Christian Konrad Heap Sort 4 / 11

From Array to Tree

Interpretation of an Array as a Complete Binary Tree

Easy Navigation:

Parent of i : ⌊i/2⌋
Left/Right Child of i : 2i and 2i + 1

Dr Christian Konrad Heap Sort 4 / 11

Heap Property

The Heap Property

Key of nodes larger than keys of their children

Heap Property → Maximum at root
Important for Extract-Max(.)

Dr Christian Konrad Heap Sort 5 / 11

Heap Property

The Heap Property

Key of nodes larger than keys of their children

Heap Property → Maximum at root
Important for Extract-Max(.)

Dr Christian Konrad Heap Sort 5 / 11

Heap Property

The Heap Property

Key of nodes larger than keys of their children

Heap Property → Maximum at root
Important for Extract-Max(.)

Dr Christian Konrad Heap Sort 5 / 11

Heap Property

The Heap Property

Key of nodes larger than keys of their children

Heap Property → Maximum at root
Important for Extract-Max(.)

Dr Christian Konrad Heap Sort 5 / 11

Heap Property

The Heap Property

Key of nodes larger than keys of their children

Heap Property → Maximum at root
Important for Extract-Max(.)

Dr Christian Konrad Heap Sort 5 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6 / 11

Runtime of Heapify()

Heapify()
Let p be the key of a node and let c1, c2 be the keys of its children

Let c = max{c1, c2}
If c > p then exchange nodes with keys p and c

call Heapify() recursively at node with key p

Runtime:

Exchanging nodes requires time O(1)

The number of recursive calls is bounded by the height of the
tree, i.e., O(log n)

Runtime of Heapify: O(log n).

Constructing a Heap: Build(.) Runtime O(n log n)

Dr Christian Konrad Heap Sort 7 / 11

Runtime of Heapify()

Heapify()
Let p be the key of a node and let c1, c2 be the keys of its children

Let c = max{c1, c2}

If c > p then exchange nodes with keys p and c

call Heapify() recursively at node with key p

Runtime:

Exchanging nodes requires time O(1)

The number of recursive calls is bounded by the height of the
tree, i.e., O(log n)

Runtime of Heapify: O(log n).

Constructing a Heap: Build(.) Runtime O(n log n)

Dr Christian Konrad Heap Sort 7 / 11

Runtime of Heapify()

Heapify()
Let p be the key of a node and let c1, c2 be the keys of its children

Let c = max{c1, c2}
If c > p then exchange nodes with keys p and c

call Heapify() recursively at node with key p

Runtime:

Exchanging nodes requires time O(1)

The number of recursive calls is bounded by the height of the
tree, i.e., O(log n)

Runtime of Heapify: O(log n).

Constructing a Heap: Build(.) Runtime O(n log n)

Dr Christian Konrad Heap Sort 7 / 11

Runtime of Heapify()

Heapify()
Let p be the key of a node and let c1, c2 be the keys of its children

Let c = max{c1, c2}
If c > p then exchange nodes with keys p and c

call Heapify() recursively at node with key p

Runtime:

Exchanging nodes requires time O(1)

The number of recursive calls is bounded by the height of the
tree, i.e., O(log n)

Runtime of Heapify: O(log n).

Constructing a Heap: Build(.) Runtime O(n log n)

Dr Christian Konrad Heap Sort 7 / 11

Runtime of Heapify()

Heapify()
Let p be the key of a node and let c1, c2 be the keys of its children

Let c = max{c1, c2}
If c > p then exchange nodes with keys p and c

call Heapify() recursively at node with key p

Runtime:

Exchanging nodes requires time O(1)

The number of recursive calls is bounded by the height of the
tree, i.e., O(log n)

Runtime of Heapify: O(log n).

Constructing a Heap: Build(.) Runtime O(n log n)

Dr Christian Konrad Heap Sort 7 / 11

Runtime of Heapify()

Heapify()
Let p be the key of a node and let c1, c2 be the keys of its children

Let c = max{c1, c2}
If c > p then exchange nodes with keys p and c

call Heapify() recursively at node with key p

Runtime:

Exchanging nodes requires time O(1)

The number of recursive calls is bounded by the height of the
tree, i.e., O(log n)

Runtime of Heapify: O(log n).

Constructing a Heap: Build(.) Runtime O(n log n)

Dr Christian Konrad Heap Sort 7 / 11

Runtime of Heapify()

Heapify()
Let p be the key of a node and let c1, c2 be the keys of its children

Let c = max{c1, c2}
If c > p then exchange nodes with keys p and c

call Heapify() recursively at node with key p

Runtime:

Exchanging nodes requires time O(1)

The number of recursive calls is bounded by the height of the
tree, i.e., O(log n)

Runtime of Heapify: O(log n).

Constructing a Heap: Build(.) Runtime O(n log n)

Dr Christian Konrad Heap Sort 7 / 11

Runtime of Heapify()

Heapify()
Let p be the key of a node and let c1, c2 be the keys of its children

Let c = max{c1, c2}
If c > p then exchange nodes with keys p and c

call Heapify() recursively at node with key p

Runtime:

Exchanging nodes requires time O(1)

The number of recursive calls is bounded by the height of the
tree, i.e., O(log n)

Runtime of Heapify: O(log n).

Constructing a Heap: Build(.) Runtime O(n log n)

Dr Christian Konrad Heap Sort 7 / 11

Runtime of Heapify()

Heapify()
Let p be the key of a node and let c1, c2 be the keys of its children

Let c = max{c1, c2}
If c > p then exchange nodes with keys p and c

call Heapify() recursively at node with key p

Runtime:

Exchanging nodes requires time O(1)

The number of recursive calls is bounded by the height of the
tree, i.e., O(log n)

Runtime of Heapify: O(log n).

Constructing a Heap: Build(.) Runtime O(n log n)

Dr Christian Konrad Heap Sort 7 / 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11

Improved Analysis of Heap Construction

Analysis
We sum over all relevant levels, count the
number of nodes per level, and multiply
with the depth of their subtrees:

Runtime =
i∑

j=1

nodes at level (i − j + 1) · depth of subtree · O(1)

= O(1)
i∑

j=1

2i−j · j = O(1) · 2i ·
i∑

j=1

j

2j

= O(2i) = O(n′) = O(n) ,

using
∑i

j=1
j
2j

= O(1) (see trick from linear/binary search lecture).

Dr Christian Konrad Heap Sort 9 / 11

Improved Analysis of Heap Construction

Analysis
We sum over all relevant levels, count the
number of nodes per level, and multiply
with the depth of their subtrees:

Runtime =
i∑

j=1

nodes at level (i − j + 1) · depth of subtree · O(1)

= O(1)
i∑

j=1

2i−j · j = O(1) · 2i ·
i∑

j=1

j

2j

= O(2i) = O(n′) = O(n) ,

using
∑i

j=1
j
2j

= O(1) (see trick from linear/binary search lecture).

Dr Christian Konrad Heap Sort 9 / 11

Improved Analysis of Heap Construction

Analysis
We sum over all relevant levels, count the
number of nodes per level, and multiply
with the depth of their subtrees:

Runtime =
i∑

j=1

nodes at level (i − j + 1) · depth of subtree · O(1)

= O(1)
i∑

j=1

2i−j · j

= O(1) · 2i ·
i∑

j=1

j

2j

= O(2i) = O(n′) = O(n) ,

using
∑i

j=1
j
2j

= O(1) (see trick from linear/binary search lecture).

Dr Christian Konrad Heap Sort 9 / 11

Improved Analysis of Heap Construction

Analysis
We sum over all relevant levels, count the
number of nodes per level, and multiply
with the depth of their subtrees:

Runtime =
i∑

j=1

nodes at level (i − j + 1) · depth of subtree · O(1)

= O(1)
i∑

j=1

2i−j · j = O(1) · 2i ·
i∑

j=1

j

2j

= O(2i) = O(n′) = O(n) ,

using
∑i

j=1
j
2j

= O(1) (see trick from linear/binary search lecture).

Dr Christian Konrad Heap Sort 9 / 11

Improved Analysis of Heap Construction

Analysis
We sum over all relevant levels, count the
number of nodes per level, and multiply
with the depth of their subtrees:

Runtime =
i∑

j=1

nodes at level (i − j + 1) · depth of subtree · O(1)

= O(1)
i∑

j=1

2i−j · j = O(1) · 2i ·
i∑

j=1

j

2j

= O(2i)

= O(n′) = O(n) ,

using
∑i

j=1
j
2j

= O(1) (see trick from linear/binary search lecture).

Dr Christian Konrad Heap Sort 9 / 11

Improved Analysis of Heap Construction

Analysis
We sum over all relevant levels, count the
number of nodes per level, and multiply
with the depth of their subtrees:

Runtime =
i∑

j=1

nodes at level (i − j + 1) · depth of subtree · O(1)

= O(1)
i∑

j=1

2i−j · j = O(1) · 2i ·
i∑

j=1

j

2j

= O(2i) = O(n′)

= O(n) ,

using
∑i

j=1
j
2j

= O(1) (see trick from linear/binary search lecture).

Dr Christian Konrad Heap Sort 9 / 11

Improved Analysis of Heap Construction

Analysis
We sum over all relevant levels, count the
number of nodes per level, and multiply
with the depth of their subtrees:

Runtime =
i∑

j=1

nodes at level (i − j + 1) · depth of subtree · O(1)

= O(1)
i∑

j=1

2i−j · j = O(1) · 2i ·
i∑

j=1

j

2j

= O(2i) = O(n′) = O(n) ,

using
∑i

j=1
j
2j

= O(1) (see trick from linear/binary search lecture).

Dr Christian Konrad Heap Sort 9 / 11

Improved Analysis of Heap Construction

Analysis
We sum over all relevant levels, count the
number of nodes per level, and multiply
with the depth of their subtrees:

Runtime =
i∑

j=1

nodes at level (i − j + 1) · depth of subtree · O(1)

= O(1)
i∑

j=1

2i−j · j = O(1) · 2i ·
i∑

j=1

j

2j

= O(2i) = O(n′) = O(n) ,

using
∑i

j=1
j
2j

= O(1) (see trick from linear/binary search lecture).

Dr Christian Konrad Heap Sort 9 / 11

The Complete Algorithm

Putting Everything Together

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr Christian Konrad Heap Sort 10 / 11

The Complete Algorithm

Putting Everything Together

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr Christian Konrad Heap Sort 10 / 11

The Complete Algorithm

Putting Everything Together

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr Christian Konrad Heap Sort 10 / 11

The Complete Algorithm

Putting Everything Together

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr Christian Konrad Heap Sort 10 / 11

The Complete Algorithm

Putting Everything Together

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr Christian Konrad Heap Sort 10 / 11

The Complete Algorithm

Putting Everything Together

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr Christian Konrad Heap Sort 10 / 11

The Complete Algorithm

Putting Everything Together

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr Christian Konrad Heap Sort 10 / 11

The Complete Algorithm

Putting Everything Together

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr Christian Konrad Heap Sort 10 / 11

The Complete Algorithm

Putting Everything Together

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr Christian Konrad Heap Sort 10 / 11

The Complete Algorithm

Putting Everything Together

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr Christian Konrad Heap Sort 10 / 11

The Complete Algorithm

Putting Everything Together

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr Christian Konrad Heap Sort 10 / 11

The Complete Algorithm

Putting Everything Together

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

Dr Christian Konrad Heap Sort 10 / 11

The Complete Algorithm

Putting Everything Together

1 Build() O(n)
2 Repeat n times:

1 Swap root with last element O(1)
2 Decrease size of heap by 1 O(1)
3 Heapify(root) O(log n)

Runtime: O(n log n)

Dr Christian Konrad Heap Sort 10 / 11

Heapsort is Not Stable

Example:

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable

Dr Christian Konrad Heap Sort 11 / 11

Heapsort is Not Stable

Example:

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable

Dr Christian Konrad Heap Sort 11 / 11

Heapsort is Not Stable

Example:

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable

Dr Christian Konrad Heap Sort 11 / 11

Heapsort is Not Stable

Example:

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable

Dr Christian Konrad Heap Sort 11 / 11

