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e Insertion-Sort: O(n?) in worst case, in place, stable

@ Merge-Sort: O(nlogn) in worst case, NOT in place, stable

Heap Sort (best of the two)
@ O(nlog n) in worst case, in place, NOT stable

@ Uses a heap data structure (a heap is special tree)

Data Structures

o Data storage format that allows for efficient access and
modification

@ Building block of many efficient algorithms

@ For example, an array is a data structure
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Priority Queues

Priority Queue:
Data structure that allows the following operations:

@ Build(.): Create data structure given a set of data items

e Extract-Max(.): Remove the maximum element from the data
structure and return it

@ others...

Sorting using a Priority Queue

extract-Max

|14|3|9|8|16[2|1|7|11|12|5‘

max Algorithm

Data Structure
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From Array to Tree

Interpretation of an Array as a Complete Binary Tree

1 2 3 4 5 6 7 8 9 10 11

|l4|3|9|8|16|2|1|7|11|12|5|

Easy Navigation:
e Parent of i |i/2]
e Left/Right Child of i: 2/ and 2/ + 1
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Heap Property

The Heap Property

Key of nodes larger than keys of their children

o

Heap Property — Maximum at root
Important for Extract-Max(.)
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The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()
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Runtime of Heapify()

Heapify()

Let p be the key of a node and let c1, ¢ be the keys of its children
o Let c = max{ci, &}
@ If ¢ > p then exchange nodes with keys p and ¢
o call Heapify() recursively at node with key p

Runtime:
e Exchanging nodes requires time O(1)
@ The number of recursive calls is bounded by the height of the
tree, i.e., O(logn)
e Runtime of Heapify: O(logn).

Constructing a Heap: Build(.) Runtime O(nlog n)
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Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step
o Heapify(x): O(depth of subtree rooted at x) = O(log n)

@ Observe: Most nodes close to the "bottom” in a complete
binary tree

Analysis:
()

@ Let i be the largest integer

such that n :=2' —1and n <n e o
@ There are at most n’ internal

nodes (candidates for Heapify()) o @ a e
@ These nodes are contained in a

perfect binary tree 0 @ @ °

@ This tree has i levels
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Improved Analysis of Heap Construction

Analysis @

We sum over all relevant levels, count the
number of nodes per level, and multiply a e

with the depth of their subtrees:
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| elololo

Runtime = Z # nodes at level (i —j + 1) - depth of subtree - O(1)
j=1
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using Z}:l éﬁ = O(1) (see trick from linear/binary search lecture).
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The Complete Algorithm

Putting Everything Together

T[] o] [n]e]e]s]

@ Build() O(n)
@ Repeat n times:

@ Swap root with last element  O(1)
@ Decrease size of heap by 1 O(1)
© Heapify(root)  O(log n)

Runtime: O(nlog n)
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Heapsort is Not Stable

Example:

@ Build()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)
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Heapsort is Not Stable

Example:

@ Build()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable
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