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Priority Queues

Priority Queue:
Data structure that allows the following operations:

Build(.): Create data structure given a set of data items

Extract-Max(.): Remove the maximum element from the data
structure and return it

others...

Sorting using a Priority Queue
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From Array to Tree

Interpretation of an Array as a Complete Binary Tree

Easy Navigation:

Parent of i : ⌊i/2⌋
Left/Right Child of i : 2i and 2i + 1
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The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

1 Traverse tree with regards to right-to-left array ordering

2 If node does not fulfill Heap Property: Heapify()
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Runtime of Heapify()

Heapify()
Let p be the key of a node and let c1, c2 be the keys of its children

Let c = max{c1, c2}
If c > p then exchange nodes with keys p and c

call Heapify() recursively at node with key p

Runtime:

Exchanging nodes requires time O(1)

The number of recursive calls is bounded by the height of the
tree, i.e., O(log n)

Runtime of Heapify: O(log n).

Constructing a Heap: Build(.) Runtime O(n log n)
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Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11



Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11



Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11



Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11



Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11



Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11



Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11



Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Heapify(x): O(depth of subtree rooted at x) = O(log n)

Observe: Most nodes close to the “bottom” in a complete
binary tree

Analysis:

Let i be the largest integer
such that n′ := 2i − 1 and n′ < n

There are at most n′ internal
nodes (candidates for Heapify())

These nodes are contained in a
perfect binary tree

This tree has i levels

Dr Christian Konrad Heap Sort 8 / 11



Improved Analysis of Heap Construction

Analysis
We sum over all relevant levels, count the
number of nodes per level, and multiply
with the depth of their subtrees:

Runtime =
i∑

j=1

# nodes at level (i − j + 1) · depth of subtree · O(1)

= O(1)
i∑

j=1

2i−j · j = O(1) · 2i ·
i∑

j=1

j

2j

= O(2i ) = O(n′) = O(n) ,

using
∑i

j=1
j
2j

= O(1) (see trick from linear/binary search lecture).
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The Complete Algorithm

Putting Everything Together

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)
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The Complete Algorithm

Putting Everything Together

1 Build() O(n)
2 Repeat n times:

1 Swap root with last element O(1)
2 Decrease size of heap by 1 O(1)
3 Heapify(root) O(log n)

Runtime: O(n log n)
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Heapsort is Not Stable

Example:

1 Build()
2 Repeat n times:

1 Swap root with last element
2 Decrease size of heap by 1
3 Heapify(root)

1 is moved from left to the right past 1 and 1
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