Heap Sort

COMS10017 - Algorithms 1

Dr Christian Konrad

Dr Christian Konrad Heap Sort 1/ 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far

Dr Christian Konrad Heap Sort 2/ 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far

e Insertion-Sort: O(n?) in worst case, in place, stable

Dr Christian Konrad Heap Sort 2/ 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far
e Insertion-Sort: O(n?) in worst case, in place, stable

@ Merge-Sort: O(nlogn) in worst case, NOT in place, stable

Dr Christian Konrad Heap Sort 2/ 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far
e Insertion-Sort: O(n?) in worst case, in place, stable

@ Merge-Sort: O(nlogn) in worst case, NOT in place, stable

Heap Sort (best of the two)

Dr Christian Konrad Heap Sort 2/ 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far
e Insertion-Sort: O(n?) in worst case, in place, stable

@ Merge-Sort: O(nlogn) in worst case, NOT in place, stable

Heap Sort (best of the two)

@ O(nlog n) in worst case, in place, NOT stable

Dr Christian Konrad Heap Sort 2/ 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far
e Insertion-Sort: O(n?) in worst case, in place, stable

@ Merge-Sort: O(nlogn) in worst case, NOT in place, stable

Heap Sort (best of the two)
@ O(nlog n) in worst case, in place, NOT stable

@ Uses a heap data structure (a heap is special tree)

Dr Christian Konrad Heap Sort 2/ 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far
e Insertion-Sort: O(n?) in worst case, in place, stable

@ Merge-Sort: O(nlogn) in worst case, NOT in place, stable

Heap Sort (best of the two)
@ O(nlog n) in worst case, in place, NOT stable

@ Uses a heap data structure (a heap is special tree)

Data Structures

Dr Christian Konrad Heap Sort 2/ 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far
e Insertion-Sort: O(n?) in worst case, in place, stable

@ Merge-Sort: O(nlogn) in worst case, NOT in place, stable

Heap Sort (best of the two)
@ O(nlog n) in worst case, in place, NOT stable

@ Uses a heap data structure (a heap is special tree)

Data Structures

o Data storage format that allows for efficient access and
modification

Dr Christian Konrad Heap Sort 2/ 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far
e Insertion-Sort: O(n?) in worst case, in place, stable

@ Merge-Sort: O(nlogn) in worst case, NOT in place, stable

Heap Sort (best of the two)
@ O(nlog n) in worst case, in place, NOT stable

@ Uses a heap data structure (a heap is special tree)

Data Structures

o Data storage format that allows for efficient access and
modification

@ Building block of many efficient algorithms

Dr Christian Konrad Heap Sort 2/ 11

Sorting Algorithms seen so far

Sorting Algorithms seen so far
e Insertion-Sort: O(n?) in worst case, in place, stable

@ Merge-Sort: O(nlogn) in worst case, NOT in place, stable

Heap Sort (best of the two)
@ O(nlog n) in worst case, in place, NOT stable

@ Uses a heap data structure (a heap is special tree)

Data Structures

o Data storage format that allows for efficient access and
modification

@ Building block of many efficient algorithms

@ For example, an array is a data structure

Dr Christian Konrad Heap Sort 2/ 11

Priority Queues

Priority Queue:
Data structure that allows the following operations:

@ Build(.): Create data structure given a set of data items

e Extract-Max(.): Remove the maximum element from the data
structure and return it

@ others...

Dr Christian Konrad Heap Sort 3/ 11

Priority Queues

Priority Queue:
Data structure that allows the following operations:

@ Build(.): Create data structure given a set of data items

e Extract-Max(.): Remove the maximum element from the data
structure and return it

@ others...

Sorting using a Priority Queue

extract-Max

|14|3|9|8|16[2|1|7|11|12|5‘

max Algorithm

Data Structure

Dr Christian Konrad Heap Sort 3/ 11

From Array to Tree

Interpretation of an Array as a Complete Binary Tree

Dr Christian Konrad Heap Sort 4/ 11

From Array to Tree

Interpretation of an Array as a Complete Binary Tree

1 2 3 4 5 6 7 8 9 10 11

|l4|3|9|8|16|2|1|7|11|12|5|

Dr Christian Konrad Heap Sort 4/ 11

From Array to Tree

Interpretation of an Array as a Complete Binary Tree

1 2 3 4 5 6 7 8 9 10 11

|l4|3|9|8|16|2|1|7|11|12|5|

Easy Navigation:

Dr Christian Konrad Heap Sort 4/ 11

From Array to Tree

Interpretation of an Array as a Complete Binary Tree

1 2 3 4 5 6 7 8 9 10 11

|l4|3|9|8|16|2|1|7|11|12|5|

Easy Navigation:
e Parent of i |i/2]

Dr Christian Konrad Heap Sort 4/ 11

From Array to Tree

Interpretation of an Array as a Complete Binary Tree

1 2 3 4 5 6 7 8 9 10 11

|l4|3|9|8|16|2|1|7|11|12|5|

Easy Navigation:
e Parent of i |i/2]
e Left/Right Child of i: 2/ and 2/ + 1

Dr Christian Konrad Heap Sort 4/ 11

Heap Property

The Heap Property

Key of nodes larger than keys of their children

Dr Christian Konrad Heap Sort 5/ 11

Heap Property

The Heap Property

Key of nodes larger than keys of their children

o

Dr Christian Konrad Heap Sort 5/ 11

Heap Property

The Heap Property

Key of nodes larger than keys of their children

e

Dr Christian Konrad Heap Sort 5/ 11

Heap Property

The Heap Property

Key of nodes larger than keys of their children

o

Dr Christian Konrad Heap Sort 5/ 11

Heap Property

The Heap Property

Key of nodes larger than keys of their children

o

Heap Property — Maximum at root
Important for Extract-Max(.)

Dr Christian Konrad Heap Sort 5/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

(24)
OENO.
(@~ (@O

'@O

Dr Christian Konrad Heap Sort 6/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

(24)
OO,
01010
00‘

Dr Christian Konrad Heap Sort 6/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

(29)
&g
OENOION0,
9101010,

Dr Christian Konrad Heap Sort 6/ 11

The Heapify Operation

Constructing a Heap: Build(.)
Given a binary tree, transform it into one that fulfills the Heap
Property

@ Traverse tree with regards to right-to-left array ordering
@ If node does not fulfill Heap Property: Heapify()

Dr Christian Konrad Heap Sort 6/ 11

Runtime of Heapify()

Heapify()
Let p be the key of a node and let c1, ¢ be the keys of its children

Dr Christian Konrad Heap Sort 7/ 11

Runtime of Heapify()

Heapify()
Let p be the key of a node and let c1, ¢ be the keys of its children

o Let c = max{ci, &}

Dr Christian Konrad Heap Sort 7/ 11

Runtime of Heapify()

Heapify()
Let p be the key of a node and let c1, ¢ be the keys of its children

o Let c = max{ci, &}

@ If ¢ > p then exchange nodes with keys p and ¢

Dr Christian Konrad Heap Sort 7/ 11

Runtime of Heapify()

Heapify()

Let p be the key of a node and let c1, ¢ be the keys of its children
o Let c = max{ci, &}
@ If ¢ > p then exchange nodes with keys p and ¢
o call Heapify() recursively at node with key p

Dr Christian Konrad Heap Sort 7/ 11

Runtime of Heapify()

Heapify()

Let p be the key of a node and let c1, ¢ be the keys of its children
o Let c = max{ci, &}
@ If ¢ > p then exchange nodes with keys p and ¢
o call Heapify() recursively at node with key p

Runtime:

Dr Christian Konrad Heap Sort 7/ 11

Runtime of Heapify()

Heapify()

Let p be the key of a node and let c1, ¢ be the keys of its children
o Let c = max{ci, &}
@ If ¢ > p then exchange nodes with keys p and ¢
o call Heapify() recursively at node with key p

Runtime:

e Exchanging nodes requires time O(1)

Dr Christian Konrad Heap Sort 7/ 11

Runtime of Heapify()

Heapify()

Let p be the key of a node and let c1, ¢ be the keys of its children
o Let c = max{ci, &}
@ If ¢ > p then exchange nodes with keys p and ¢
o call Heapify() recursively at node with key p

Runtime:
e Exchanging nodes requires time O(1)

@ The number of recursive calls is bounded by the height of the
tree, i.e., O(logn)

Dr Christian Konrad Heap Sort 7/ 11

Runtime of Heapify()

Heapify()

Let p be the key of a node and let c1, ¢ be the keys of its children
o Let c = max{ci, &}
@ If ¢ > p then exchange nodes with keys p and ¢
o call Heapify() recursively at node with key p

Runtime:
e Exchanging nodes requires time O(1)
@ The number of recursive calls is bounded by the height of the
tree, i.e., O(logn)
e Runtime of Heapify: O(logn).

Dr Christian Konrad Heap Sort 7/ 11

Runtime of Heapify()

Heapify()

Let p be the key of a node and let c1, ¢ be the keys of its children
o Let c = max{ci, &}
@ If ¢ > p then exchange nodes with keys p and ¢
o call Heapify() recursively at node with key p

Runtime:
e Exchanging nodes requires time O(1)
@ The number of recursive calls is bounded by the height of the
tree, i.e., O(logn)
e Runtime of Heapify: O(logn).

Constructing a Heap: Build(.) Runtime O(nlog n)

Dr Christian Konrad Heap Sort 7/ 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step

Dr Christian Konrad Heap Sort 8/ 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step
o Heapify(x): O(depth of subtree rooted at x) = O(log n)

Dr Christian Konrad Heap Sort 8/ 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step
o Heapify(x): O(depth of subtree rooted at x) = O(log n)

@ Observe: Most nodes close to the "bottom” in a complete
binary tree

Dr Christian Konrad Heap Sort 8/ 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step
o Heapify(x): O(depth of subtree rooted at x) = O(log n)

@ Observe: Most nodes close to the "bottom” in a complete
binary tree

Analysis:
(1)
OO
OB OIOI0
QIOION0

Dr Christian Konrad Heap Sort 8/ 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step
o Heapify(x): O(depth of subtree rooted at x) = O(log n)

@ Observe: Most nodes close to the "bottom” in a complete
binary tree

Analysis: @
@ Let i be the largest integer

such that n’ ;=2 —1and n’ <n e o
ORNOIONIO
QIOIOI0

Dr Christian Konrad Heap Sort 8/ 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step
o Heapify(x): O(depth of subtree rooted at x) = O(log n)

@ Observe: Most nodes close to the "bottom” in a complete
binary tree

Analysis:
()

@ Let i be the largest integer

such that n :=2' —1and n <n e o
@ There are at most n’ internal

nodes (candidates for Heapify()) o @ e e
O ® G

Dr Christian Konrad Heap Sort 8/ 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step
o Heapify(x): O(depth of subtree rooted at x) = O(log n)

@ Observe: Most nodes close to the "bottom” in a complete
binary tree

Analysis: @
@ Let i be the largest integer

such that n :=2' —1and n <n e o
@ There are at most n’ internal

nodes (candidates for Heapify()) o @ a e
@ These nodes are contained in a
perfect binary tree 0 @ @ °

Dr Christian Konrad Heap Sort 8/ 11

Improved Analysis of Heap Construction

More Precise Analysis of the Heap Construction Step
o Heapify(x): O(depth of subtree rooted at x) = O(log n)

@ Observe: Most nodes close to the "bottom” in a complete
binary tree

Analysis:
()

@ Let i be the largest integer

such that n :=2' —1and n <n e o
@ There are at most n’ internal

nodes (candidates for Heapify()) o @ a e
@ These nodes are contained in a

perfect binary tree 0 @ @ °

@ This tree has i levels

Dr Christian Konrad Heap Sort 8/ 11

Improved Analysis of Heap Construction

Analysis @

We sum over all relevant levels, count the
number of nodes per level, and multiply a e

with the depth of their subtrees:
OB OION0,
QIOIOI0

Dr Christian Konrad Heap Sort 9/ 11

Improved Analysis of Heap Construction

Analysis @

We sum over all relevant levels, count the
number of nodes per level, and multiply a e

with the depth of their subtrees:
OB OION0,
| elololo

Runtime = Z # nodes at level (i —j + 1) - depth of subtree - O(1)
j=1

Dr Christian Konrad Heap Sort 9/ 11

Improved Analysis of Heap Construction

Analysis @

We sum over all relevant levels, count the
number of nodes per level, and multiply a e

with the depth of their subtrees:
OB OION0,
| elololo

Runtime = Z # nodes at level (i —j + 1) - depth of subtree - O(1)
j=1

= 0(1)) 27
j=1

Dr Christian Konrad Heap Sort 9/ 11

Improved Analysis of Heap Construction

Analysis @

We sum over all relevant levels, count the
number of nodes per level, and multiply a e

with the depth of their subtrees:
OB OION0,
| elololo

Runtime = Z # nodes at level (i —j + 1) - depth of subtree - O(1)
j=1

= o)y 2. j=0@)-2-Y L

j=1

2J
j=1

Dr Christian Konrad Heap Sort 9/ 11

Improved Analysis of Heap Construction

Analysis @

We sum over all relevant levels, count the
number of nodes per level, and multiply a e

with the depth of their subtrees:
OB OION0,
| elololo

Runtime = Z # nodes at level (i —j + 1) - depth of subtree - O(1)

j=1

= o)y 2. j=0@) 2" é
j=1 j=1

= 0(2)

Dr Christian Konrad Heap Sort 9/ 11

Improved Analysis of Heap Construction

Analysis @

We sum over all relevant levels, count the
number of nodes per level, and multiply a e

with the depth of their subtrees:
OB OION0,
| elololo

Runtime = Z # nodes at level (i —j + 1) - depth of subtree - O(1)

j=1

= o)y 2. j=0@) 2" é
j=1 j=1

= 0(2") = 0o(n)

Dr Christian Konrad Heap Sort 9/ 11

Improved Analysis of Heap Construction

Analysis @

We sum over all relevant levels, count the
number of nodes per level, and multiply a e

with the depth of their subtrees:
OB OION0,
| elololo

Runtime = Z # nodes at level (i —j + 1) - depth of subtree - O(1)
j=1

= o)y 2. j=0@)-2-Y L

j=1

2J
j=1

Dr Christian Konrad Heap Sort 9/ 11

Improved Analysis of Heap Construction

Analysis @

We sum over all relevant levels, count the
number of nodes per level, and multiply a e

with the depth of their subtrees:
OB OION0,
| elololo

Runtime = Z # nodes at level (i —j + 1) - depth of subtree - O(1)
j=1
i o . i _]
— =) .= L e
= 0(1)) 2. j=0(1)-2 >
j=1 j=1

— 0(2') = () = O(n) .
using Z}:l éﬁ = O(1) (see trick from linear/binary search lecture).

Dr Christian Konrad Heap Sort 9/ 11

The Complete Algorithm

Putting Everything Together

|14|3|9|8|16|2|1|7|11|12|5| @
@ Build() (2] (2)
@ Repeat n times: e @ ° o
@ Swap root with last element
@ Decrease size of heap by 1 o ° e e

© Heapify(root)

Dr Christian Konrad Heap Sort 10/ 11

The Complete Algorithm

Putting Everything Together

|16|l4|9|11|12|2|1|7|8|3|5| @
@ Build() @ o
@ Repeat n times: e @ ° o
@ Swap root with last element
@ Decrease size of heap by 1 o e e e

© Heapify(root)

Dr Christian Konrad Heap Sort 10/ 11

The Complete Algorithm

Putting Everything Together

|5|14|9|11|12|2|1|7|8|3|16| e
@ Build() (1) (2)
@ Repeat n times: e @ ° o
@ Swap root with last element
@ Decrease size of heap by 1 o e e @

© Heapify(root)

Dr Christian Konrad Heap Sort 10/ 11

The Complete Algorithm

Putting Everything Together

|5|l4|9|11|12|2|1|7|8|3|16| e
@ Build() (1) (2)
@ Repeat n times: e @ ° o
@ Swap root with last element
@ Decrease size of heap by 1 o e e

© Heapify(root)

Dr Christian Konrad Heap Sort 10/ 11

The Complete Algorithm

Putting Everything Together

|14|12|9|11|5|2|1|7|8|3|16| @
@ Build() (1) (2)
@ Repeat n times: e e ° o
@ Swap root with last element
@ Decrease size of heap by 1 o e e

© Heapify(root)

Dr Christian Konrad Heap Sort 10/ 11

The Complete Algorithm

Putting Everything Together

|3|12|9|11|5|2|1|7|8|14|16| °
@ Build() (1) (2)
@ Repeat n times: e e ° o
@ Swap root with last element
@ Decrease size of heap by 1 o e @

© Heapify(root)

Dr Christian Konrad Heap Sort 10/ 11

The Complete Algorithm

Putting Everything Together

|3|12|9|11|5|2|1|7|8|14|16| °
@ Build() (2 (2)
@ Repeat n times: e e ° 0

@ Swap root with last element
@ Decrease size of heap by 1 o e
© Heapify(root)

Dr Christian Konrad Heap Sort 10/ 11

The Complete Algorithm

Putting Everything Together

|12|11|9|8|5|2|1|7|3|14|16| @
@ Build() (2 (2)
@ Repeat n times: e e ° 0

@ Swap root with last element
@ Decrease size of heap by 1 o e
© Heapify(root)

Dr Christian Konrad Heap Sort 10/ 11

The Complete Algorithm

Putting Everything Together

|3|11|9|8|5|2|1|7|12|14|16|

@ Build()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

Dr Christian Konrad Heap Sort 10/ 11

The Complete Algorithm

Putting Everything Together

|3|11|9|8|5|2|1|7|12|14|16| °
@ Build() (2 (2)
@ Repeat n times: e e ° 0

@ Swap root with last element o
@ Decrease size of heap by 1
© Heapify(root)

Dr Christian Konrad Heap Sort 10/ 11

The Complete Algorithm

Putting Everything Together

|3|11|9|8|5|2|1|7|12|14|16|

@ Build()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

Dr Christian Konrad Heap Sort 10/ 11

The Complete Algorithm

Putting Everything Together

T[] o] [n]e]e]s]

@ Build()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

Dr Christian Konrad Heap Sort 10/ 11

The Complete Algorithm

Putting Everything Together

T[] o] [n]e]e]s]

@ Build() O(n)
@ Repeat n times:

@ Swap root with last element O(1)
@ Decrease size of heap by 1 O(1)
© Heapify(root) O(log n)

Runtime: O(nlog n)

Dr Christian Konrad Heap Sort 10/ 11

Heapsort is Not Stable

Example:

@ Build()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

Dr Christian Konrad Heap Sort 11/ 11

Heapsort is Not Stable

Example:

@ Build()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

Dr Christian Konrad Heap Sort 11/ 11

Heapsort is Not Stable

Example:

@ Build()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

Dr Christian Konrad Heap Sort 11/ 11

Heapsort is Not Stable

Example:

@ Build()
@ Repeat n times:

@ Swap root with last element
@ Decrease size of heap by 1
© Heapify(root)

1 is moved from left to the right past 1 and 1

Heap-sort not stable

Dr Christian Konrad Heap Sort 11/ 11

