Quicksort

COMS10017 - Algorithms 1

Dr Christian Konrad

Dr Christian Konrad Quicksort 1/ 12

Sorting Algorithms seen so far:

Dr Christian Konrad Quicksort 2/ 12

Sorting Algorithms seen so far:

Worst case Average case stable? in place?
Insertionsort 0(n?) 0(n?) yes yes
Mergesort | O(nlogn) O(nlog n) yes no
Heapsort O(nlog n) O(nlog n) no yes

Dr Christian Konrad Quicksort 2/ 12

Sorting Algorithms seen so far:

Worst case Average case stable? in place?
Insertionsort 0(n?) 0(n?) yes yes
Mergesort | O(nlogn) O(nlog n) yes no
Heapsort O(nlog n) O(nlog n) no yes
Quicksort 0(n?) O(nlog n) no yes

Dr Christian Konrad Quicksort 2/ 12

Sorting Algorithms seen so far:

Worst case Average case stable? in place?
Insertionsort 0(n?) 0(n?) yes yes
Mergesort | O(nlogn) O(nlog n) yes no
Heapsort O(nlog n) O(nlog n) no yes
Quicksort 0(n?) O(nlog n) no yes
Quicksort

Dr Christian Konrad Quicksort 2/ 12

Sorting Algorithms seen so far:

Worst case Average case stable? in place?
Insertionsort 0(n?) 0(n?) yes yes
Mergesort | O(nlogn) O(nlog n) yes no
Heapsort O(nlog n) O(nlog n) no yes
Quicksort 0(n?) O(nlog n) no yes
Quicksort

@ Very efficient in practice!

Dr Christian Konrad Quicksort 2/ 12

Sorting Algorithms seen so far:

Worst case Average case stable? in place?
Insertionsort 0(n?) 0(n?) yes yes
Mergesort | O(nlogn) O(nlog n) yes no
Heapsort O(nlog n) O(nlog n) no yes
Quicksort 0(n?) O(nlog n) no yes
Quicksort

@ Very efficient in practice!

@ In place version of Mergesort:

Dr Christian Konrad Quicksort 2/ 12

Sorting Algorithms seen so far:

Worst case Average case stable? in place?
Insertionsort 0(n?) 0(n?) yes yes
Mergesort | O(nlogn) O(nlog n) yes no
Heapsort O(nlog n) O(nlog n) no yes
Quicksort 0(n?) O(nlog n) no yes
Quicksort

@ Very efficient in practice!

@ In place version of Mergesort:

A0, [7]] < MERGESORT(AIO, [5]])
All5] +1,n — 1] <~ MERGESORT(A[[5], n — 1])
A + MERGE(A)
return A
recursive calls in mergesort

Dr Christian Konrad Quicksort 2/ 12

Merge Sort versus Quick Sort

Mergesort versus Quicksort

Dr Christian Konrad Quicksort 3/ 12

Merge Sort versus Quick Sort

Mergesort versus Quicksort

@ Mergesort: First solve subproblems recursively, then merge
their solutions

Dr Christian Konrad Quicksort 3/ 12

ge Sort versus Quick Sort

Mergesort versus Quicksort

@ Mergesort: First solve subproblems recursively, then merge
their solutions

@ Quicksort: First partition problem into two subproblems in a
clever way so that no extra work is needed when combining
the solutions to the subproblems, then solve subproblems

recursively

Dr Christian Konrad Quicksort 3/ 12

Divide and Conquer Algorithm:

Dr Christian Konrad Quicksort 4/ 12

Divide and Conquer Algorithm:

e Divide: Chose a good pivot A[q|. Rearrange A such that
every element < Alq] is left of A[g] in the resulting ordering
and every element > A[q] is right of A[g] in the resulting
ordering. Let p be the new position of A[q].

Dr Christian Konrad Quicksort 4/ 12

Divide and Conquer Algorithm:

e Divide: Chose a good pivot A[q|. Rearrange A such that
every element < Alq] is left of A[g] in the resulting ordering
and every element > A[q] is right of A[g] in the resulting
ordering. Let p be the new position of A[q].

e Conquer: Sort A[0, p — 1] and A[p + 1, n — 1] recursively.

Dr Christian Konrad Quicksort 4/ 12

Divide and Conquer Algorithm:

e Divide: Chose a good pivot A[q|. Rearrange A such that
every element < Alq] is left of A[g] in the resulting ordering
and every element > A[q] is right of A[g] in the resulting
ordering. Let p be the new position of A[q].

e Conquer: Sort A[0, p — 1] and A[p + 1, n — 1] recursively.

14| 3 9 8 |16 2 117]11)12] 5

Dr Christian Konrad Quicksort 4/ 12

Divide and Conquer Algorithm:

e Divide: Chose a good pivot A[q|. Rearrange A such that
every element < Alq] is left of A[g] in the resulting ordering
and every element > A[q] is right of A[g] in the resulting
ordering. Let p be the new position of A[q].

e Conquer: Sort A[0, p — 1] and A[p + 1, n — 1] recursively.

14|13 (9 (8 |16| 2 |1 |7 |11]|12(5

Dr Christian Konrad Quicksort 4/ 12

Divide and Conquer Algorithm:

e Divide: Chose a good pivot A[q|. Rearrange A such that
every element < Alq] is left of A[g] in the resulting ordering
and every element > A[q] is right of A[g] in the resulting
ordering. Let p be the new position of A[q].

e Conquer: Sort A[0, p — 1] and A[p + 1, n — 1] recursively.

14 3 9 8 |16 2 117]11)12] 5

Dr Christian Konrad Quicksort 4/ 12

Divide and Conquer Algorithm:

e Divide: Chose a good pivot A[q|. Rearrange A such that
every element < Alq] is left of A[g] in the resulting ordering
and every element > A[q] is right of A[g] in the resulting
ordering. Let p be the new position of A[q].

e Conquer: Sort A[0, p — 1] and A[p + 1, n — 1] recursively.

14 3 9 8 |16 2 117]11)12] 5

@ Combine: No work needed

Dr Christian Konrad Quicksort 4/ 12

Quicksort (2)

We need to address:

Dr Christian Konrad Quicksort 5/ 12

Quicksort (2)

We need to address:

@ We need to be able to rearrange the elements around the
pivot in O(n) time

Dr Christian Konrad Quicksort 5/ 12

Quicksort (2)

We need to address:

@ We need to be able to rearrange the elements around the
pivot in O(n) time

@ What is a good pivot? Ideally we would like to obtain
subproblems of equal/similar sizes

Dr Christian Konrad Quicksort 5/ 12

The Partition Step

Partition Step:

Dr Christian Konrad Quicksort 6/ 12

The Partition Step

Partition Step:
@ Input: Array A of length n

Dr Christian Konrad Quicksort 6/ 12

The Partition Step

Partition Step:
@ Input: Array A of length n
e Output: Partitioning around pivot A[n — 1]

Dr Christian Konrad Quicksort 6/ 12

The Partition Step

Partition Step:
@ Input: Array A of length n
e Output: Partitioning around pivot A[n — 1]

Require: Array A of length n

x < Aln—1]

i+ -1

for j<0...n—1do

if A[j] < x then

i—i+1
exchange A[i] with A[/]

return |

PARTITION

Dr Christian Konrad Quicksort 6/ 12

The Partition Step

Partition Step:
@ Input: Array A of length n
e Output: Partitioning around pivot A[n — 1]

Require: Array A of length n

x < Aln—1]

i+ -1

for j<0...n—1do

if A[j] < x then

i—i+1
exchange A[i] with A[/]

return |

PARTITION

Pivot: Algorithm assumes pivot is A[n — 1] (if different pivot A[q]
is used: swap A[g| with A[n — 1]).

Dr Christian Konrad Quicksort 6/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

14| 3|9 |8 (16| 2 | 1|5 11|12 7

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

14| 3|9 |8 (16| 2 | 1|5 11|12 7

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

x < Aln—1]
i -1
for j<0...n—1do
if A[j] < x then
i—i+1
exchange A[i] with A[j]

Dr Christian Konrad Quicksort 7/ 12

Loop Invariant

Invariant:

Dr Christian Konrad Quicksort 8/ 12

Loop Invariant

Invariant: At the beginning of the for loop, the following holds:
@ Elements left of j (including i) are smaller or equal to x:

For 0 < k <i:Alk] <x

Dr Christian Konrad Quicksort 8/ 12

Loop Invariant

Invariant: At the beginning of the for loop, the following holds:
@ Elements left of j (including i) are smaller or equal to x:

For 0 < k <i:Alk] <x

@ Elements right of i (excluding i) and left of j (excluding j) are
larger than x:

Fori+1<k<j—1:A[k]>x

Dr Christian Konrad Quicksort 8/ 12

Proof of Loop Invariant

@ Left of i (including /): X Aln—1]

smaller equal to x A

for j<0...n—1do

@ Right of i and left of j (excl. j): if A[j] < x then

larger than x i—i+1

exchange A[i] with A[j]
Initialization: i = -1,/ =0
i
14| 3 9 8 |16| 2 1 511112 | 7 x: | 7

Dr Christian Konrad Quicksort 9/ 12

Proof of Loop Invariant

@ Left of i (including /): x 4= Aln —1]
smaller equal to x Pl
for j<0...n—1do
@ Right of i and left of j (excl. j): if A[j] < x then
larger than x Pei+1
exchange A[i] with A[j]

Initialization: i =—-1,j=0

14| 3 9 8 (16| 2 1 5 (11|12| 7 x:| 7

Dr Christian Konrad Quicksort 9/ 12

Proof of Loop Invariant (2)

@ Left of i (including i): x = Aln —1]
smaller equal to x Pl
for j<—0...n—1do
@ Right of i and left of j (excl. j): if A[j] < x then
larger than x i—i+1
exchange A[i] with A[j]

Maintenance: Two cases:
@ A[j] > x: Then j is incremented

i j

3114 9 8 [16] 2 1 5111 (12| 7 x:| 7

Dr Christian Konrad Quicksort 10/ 12

Proof of Loop Invariant (2)

@ Left of i (including i): x = Aln —1]
smaller equal to x Pl
for j<—0...n—1do
@ Right of i and left of j (excl. j): if A[j] < x then
larger than x i—i+1
exchange A[i] with A[j]

Maintenance: Two cases:
@ A[j] > x: Then j is incremented

i j

3114(9 |8 (162 |1 |5 |11(12]| 7 x:| 7

Dr Christian Konrad Quicksort 10/ 12

Proof of Loop Invariant (2)

@ Left of i (including i): x = Aln —1]
smaller equal to x Pl
for j<—0...n—1do
@ Right of i and left of j (excl. j): if A[j] < x then
larger than x i—i+1
exchange A[i] with A[j]

Maintenance: Two cases:
@ A[j] > x: Then j is incremented v/

i j

3114(9 |8 (162 |1 |5 |11(12]| 7 x:| 7

Dr Christian Konrad Quicksort 10/ 12

Proof of Loop Invariant (2)

@ Left of i (including i): x = Aln —1]
smaller equal to x Pl
for j<—0...n—1do
@ Right of i and left of j (excl. j): if A[j] < x then
larger than x i—i+1
exchange A[i] with A[j]

Maintenance: Two cases:

@ A[j] > x: Then j is incremented v/

@ A[j] < x: Then i is incremented, A[i] and A[j] are exchanged,
and j is incremented
i j

31149 |8 |16 2 (1|5 (11|12 7 | x| 7

Dr Christian Konrad Quicksort 10/ 12

Proof of Loop Invariant (2)

@ Left of i (including i): x = Aln —1]
smaller equal to x Pl
for j<—0...n—1do
@ Right of i and left of j (excl. j): if A[j] < x then
larger than x i—i+1
exchange A[i] with A[j]

Maintenance: Two cases:

@ A[j] > x: Then j is incremented v/

@ A[j] < x: Then i is incremented, A[i] and A[j] are exchanged,
and j is incremented
i j

31149 |8 |16 2 (1|5 (11|12 7 | x| 7

Dr Christian Konrad Quicksort 10/ 12

Proof of Loop Invariant (2)

@ Left of i (including i): x = Aln —1]
smaller equal to x Pl
for j<—0...n—1do
@ Right of i and left of j (excl. j): if A[j] < x then
larger than x i—i+1
exchange A[i] with A[j]

Maintenance: Two cases:

@ A[j] > x: Then j is incremented v/

@ A[j] < x: Then i is incremented, A[i] and A[j] are exchanged,
and j is incremented
i j

3|12 (981614 | 1 |5 |11|12| 7 | x| 7

Dr Christian Konrad Quicksort 10/ 12

Proof of Loop Invariant (2)

@ Left of i (including i): x = Aln —1]
smaller equal to x Pl
for j<—0...n—1do
@ Right of i and left of j (excl. j): if A[j] < x then
larger than x i—i+1
exchange A[i] with A[j]

Maintenance: Two cases:

@ A[j] > x: Then j is incremented v/

@ A[j] < x: Then i is incremented, A[i] and A[j] are exchanged,
and j is incremented
i j

3129816141 |5 (1112 7 | x| 7

Dr Christian Konrad Quicksort 10/ 12

Proof of Loop Invariant (2)

@ Left of i (including i): x = Aln —1]
smaller equal to x Pl
for j<—0...n—1do
@ Right of i and left of j (excl. j): if A[j] < x then
larger than x i—i+1
exchange A[i] with A[j]

Maintenance: Two cases:

@ A[j] > x: Then j is incremented v/

@ A[j] < x: Then i is incremented, A[i] and A[j] are exchanged,
and j is incremented Vv
i j

3129816141 |5 (1112 7 | x| 7

Dr Christian Konrad Quicksort 10/ 12

Proof of Loop Invariant (3)

@ Left of i (including /): x < Aln—1]
i -1
smaller equal to x for ¢ 0...n—1do
@ Right of i and left of j (excl. j): if A[j] < x then
larger than x Pei+1
exchange A[i] with A[j]

Termination: (useful property showing that algo. is correct)
@ A[i] contains pivot element x that was located initially at
position n — 1
o All elements left of A[i] are smaller equal to x

@ All elements right of A[i] are larger than x

Dr Christian Konrad Quicksort 11/ 12

Proof of Loop Invariant (3)

@ Left of i (including /): x < Aln—1]
i -1
smaller equal to x for ¢ 0...n—1do
@ Right of i and left of j (excl. j): if A[j] < x then
larger than x Pei+1
exchange A[i] with A[j]

Termination: (useful property showing that algo. is correct) v/
@ A[i] contains pivot element x that was located initially at
position n — 1
o All elements left of A[i] are smaller equal to x

@ All elements right of A[i] are larger than x

Dr Christian Konrad Quicksort 11/ 12

Require: array A of length n

if n <1 then
return A

else
i < Partition(A)
QUICKSORT (A0, i — 1])
QUICKSORT(A[i +1,n —1])

Algorithm QUICKSORT

Dr Christian Konrad Quicksort 12/ 12

Require: array A of length n

if n <1 then
return A

else
i < Partition(A)
QUICKSORT (A0, i — 1])
QUICKSORT(A[i +1,n —1])

Algorithm QUICKSORT

What is the runtime of Quicksort?

Dr Christian Konrad Quicksort 12/ 12

