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Quicksort

Require: array A of length n
if n ≤ 1 then

return A
else

i ← Partition(A)
Quicksort(A[0, i − 1])
Quicksort(A[i + 1, n − 1])

Algorithm Quicksort

Partition A around a Pivot:
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Runtime of Quicksort

Runtime:

T (n): worst-case runtime on input of length n

T (1) = O(1) (termination condition)

T (n) = O(n) + T (n1) + T (n2) ,

where n1, n2 are the lengths of the two resulting subproblems.

Observe: n1 + n2 = n − 1

Worst-case:

Suppose that pivot is always the largest element

Then, n1 = n − 1, n2 = 0

Best-case:

Suppose pivot splits array evenly, i.e., pivot is the median

Then, n1 = ⌊n−1
2 ⌋, n2 = ⌈

n−1
2 ⌉
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Quicksort: Worst case

Partition:

Let C be such that Partition() runs in time at most Cn

Recurrence:
T (n) ≤ Cn + T (n − 1)

Total Runtime:

T (n) ≤
n∑

i=1

Ci = C
n∑

i=1

i

= C
(n + 1)n

2

=
C

2
(n2 + n) = O(n2) .
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Quicksort: Best case

Best Case:

n1, n2 ≤ n
2

Number of Levels: ℓ

Last level: n = 1

n

2ℓ−1
≤ 1

log(n) + 1 ≤ ℓ

Last but one level: n = 2

n

2ℓ−2
> 1 which implies log(n) + 2 > ℓ

Hence, there are ℓ = ⌈log(n)⌉+ 1 levels

Total Runtime:

Observe: Total runtime of Partition() in a level: O(n)

Total runtime: ℓ · O(n) = O(n log n) .
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Runtime: Discussion

Good versus Bad Splits:

It is crucial that subproblems are roughly balanced

In fact, enough if n1 =
1

1000n and n2 = n − 1− n1 to get a
runtime of O(n log n)

Even enough if subproblems roughly balanced most of the time

In practice, this happens most of the time, Quicksort is
therefore usually very fast
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Good versus Bad Splits: Intuition and Rough Analysis

Only good splits: Recursion tree depth ⌈log n⌉+ 1
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Good versus Bad Splits: Intuition and Rough Analysis

Good & bad splits alternate: Recursion tree depth 2 ·(⌈log n⌉+1)
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Selecting good Pivots

Ideal Pivot:

Median

Pivot Selection

To obtain runtime of O(n log n), we can spend O(n) time to
select a good pivot

There are O(n) time algorithms for finding the median

They are complicated and not efficient in practice

However, using such an algorithm gives O(n log n) worst case
runtime!

Idea that works in Practice: Select Pivot at random!
(Implementation: exchange A[n − 1] with a uniform random
element A[i ])
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Random Pivot Selection

Randomized Algorithm

Randomized pivot selection turns Quicksort into a
Randomized Algorithm

Worst-case runtime: still O(n2) (we may be unlucky!)

Expected runtime: Since we introduce randomness, the
runtime of the algorithm becomes a random variable

Definition (Bad Split)
A split is bad if min{n1, n2} ≤ 1

10n.

If we select the pivot randomly, how likely is it to have a bad split?
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Probability of a Bad Split

Probability of a Bad Split

Bad split if element chosen as pivot is either among smallest
0.1 fraction of elements or among largest 0.1 fraction

Since our choice is random, this happens with probability 0.2

Hence, in average only 1 out of 5 splits are bad

Hence, 4 out of 5 times the algorithm makes enough progress

Random Pivot Selection: Quicksort runs in expected time
O(n log n) if the pivot is chosen uniformly at random
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