Runtime of Quicksort

COMS10017 - Algorithms 1

Dr Christian Konrad

Dr Christian Konrad Runtime of Quicksort 1/ 10

Require: array A of length n

if n <1 then
return A
else

i < Partition(A)

QUICKSORT (A0, i — 1])

QUICKSORT(A[i +1,n —1])
Algorithm QUICKSORT

Dr Christian Konrad Runtime of Quicksort 2/ 10

Require: array A of length n

if n <1 then
return A
else

i < Partition(A)

QUICKSORT (A0, i — 1])

QUICKSORT(A[i +1,n —1])
Algorithm QUICKSORT

Partition A around a Pivot:

1413198162 (1|7]|11]|12]| 5

Dr Christian Konrad Runtime of Quicksort 2/ 10

Require: array A of length n

if n <1 then
return A
else

i < Partition(A)

QUICKSORT (A0, i — 1])

QUICKSORT(A[i +1,n —1])
Algorithm QUICKSORT

Partition A around a Pivot:

14|13 (9 (8 |16 2 |1 |7 |11|12(5

Dr Christian Konrad Runtime of Quicksort 2/ 10

Require: array A of length n

if n <1 then
return A
else

i < Partition(A)

QUICKSORT (A0, i — 1])

QUICKSORT(A[i +1,n —1])
Algorithm QUICKSORT

Partition A around a Pivot:

1413198162 (1|7]|11]|12]| 5

Dr Christian Konrad Runtime of Quicksort 2/ 10

Runtime of Quicksort

Runtime:

Dr Christian Konrad Runtime of Quicksort 3/ 10

Runtime of Quicksort

Runtime: T(n): worst-case runtime on input of length n

Dr Christian Konrad Runtime of Quicksort 3/ 10

Runtime of Quicksort

Runtime: T(n): worst-case runtime on input of length n

T(1) = 0(1) (termination condition)

Dr Christian Konrad Runtime of Quicksort 3/ 10

Runtime of Quicksort

Runtime: T(n): worst-case runtime on input of length n

T(1) = 0(1) (termination condition)
T(n) = O(n) + T(nl) + T(ng) ,

where n1, ny are the lengths of the two resulting subproblems.

Dr Christian Konrad Runtime of Quicksort 3/ 10

Runtime of Quicksort

Runtime: T(n): worst-case runtime on input of length n

T(1) = 0(1) (termination condition)
T(n) = O(n) + T(nl) + T(ng) ,

where n1, ny are the lengths of the two resulting subproblems.

Observe: ni +np=n—1

Dr Christian Konrad Runtime of Quicksort 3/ 10

Runtime of Quicksort

Runtime: T(n): worst-case runtime on input of length n

T(1) = 0(1) (termination condition)
T(n) = O(n) + T(nl) + T(ng) ,

where n1, ny are the lengths of the two resulting subproblems.

Observe: ni +np=n—1

Worst-case:

Dr Christian Konrad Runtime of Quicksort 3/ 10

Runtime of Quicksort

Runtime: T(n): worst-case runtime on input of length n

T(1) = 0(1) (termination condition)
T(n) = O(n) + T(nl) + T(ng) ,

where n1, ny are the lengths of the two resulting subproblems.

Observe: ni +np=n—1

Worst-case:

@ Suppose that pivot is always the largest element

Dr Christian Konrad Runtime of Quicksort 3/ 10

Runtime of Quicksort

Runtime: T(n): worst-case runtime on input of length n

T(1) = 0(1) (termination condition)
T(n) = O(n) + T(nl) + T(ng) ,

where n1, ny are the lengths of the two resulting subproblems.

Observe: ni +np=n—1

Worst-case:
@ Suppose that pivot is always the largest element

@ Then,ni=n—1,n=0

Dr Christian Konrad Runtime of Quicksort 3/ 10

Runtime of Quicksort

Runtime: T(n): worst-case runtime on input of length n

T(1) = 0(1) (termination condition)
T(n) = O(n) + T(nl) + T(ng) ,

where n1, ny are the lengths of the two resulting subproblems.

Observe: ni +np=n—1

Worst-case:

@ Suppose that pivot is always the largest element
@ Then,ni=n—1,n=0

Best-case:

Dr Christian Konrad Runtime of Quicksort 3/ 10

Runtime of Quicksort

Runtime: T(n): worst-case runtime on input of length n

T(1) = 0(1) (termination condition)
T(n) = O(n) + T(nl) + T(ng) ,

where n1, ny are the lengths of the two resulting subproblems.

Observe: ni +np=n—1

Worst-case:

@ Suppose that pivot is always the largest element
@ Then,ni=n—1,n=0

Best-case:

@ Suppose pivot splits array evenly, i.e., pivot is the median

Dr Christian Konrad Runtime of Quicksort 3/ 10

Runtime of Quicksort

Runtime: T(n): worst-case runtime on input of length n

T(1) = 0(1) (termination condition)
T(n) = O(n) + T(nl) + T(ng) ,

where n1, ny are the lengths of the two resulting subproblems.

Observe: ni +np=n—1

Worst-case:

@ Suppose that pivot is always the largest element
@ Then,ni=n—1,n=0

Best-case:
@ Suppose pivot splits array evenly, i.e., pivot is the median

@ Then, n; = {"%IJ n = ("%11

Dr Christian Konrad Runtime of Quicksort 3/ 10

Quicksort: Worst case

Partition:

Dr Christian Konrad Runtime of Quicksort 4/ 10

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most Cn

Dr Christian Konrad Runtime of Quicksort 4/ 10

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most Cn

[7 e[[w]ss] o

|1|2|3|7|8|9|14| n-1

|1|2|3 7|8|9| n-2

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most Cn

[7 e[[w]ss] o

Recurrence:

|1|2|3|7|8|9|14| n-1

|1|2|3 7|8|9| n-2

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most Cn

[7 e[[w]ss] o

Recurrence:
T(n)<Cn+T(n-1)

|1|2|3|7|8|9|14| n-1

|1|2|3 7|8|9| n-2

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most Cn

[7 e[[w]ss] o

Recurrence:
T(n)<Cn+T(n-1)
| 1 | 2 | 3 | 7 | 8 | 9 | 14 | n-1
Total Runtime:)
| 1 | 2 | 3 7 | 8 | 9 | n-2

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most Cn

[7 e[[w]ss] o

Recurrence:
T(n)<Cn+T(n-1)
| 1 | 2 | 3 | 7 | 8 | 9 | 14 | n-1
Total Runtime:)
| 1 | 2 | 3 7 | 8 | 9 | n-2

T(n)

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most Cn

2157 oo [se]ss]
Recurrence:

T(n)<Cn+T(n-1)

|1|2|3|7|8|9|14| n-1

Total Runtime:

T(n)gi:CI:CEH:I |1|2|3 7|8|9| n-2
i=1 i=1 .

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most Cn

2157 oo [se]ss]
Recurrence:

T(n)<Cn+T(n-1)

|1|2|3|7|8|9|14| n-1

Total Runtime:

T(n)gi:CI:CEH:I |1|2|3 7|8|9| n-2
i=1 i=1 . .

(n+1)n

= [1]z] 2

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most Cn

2157 oo [se]ss]
Recurrence:

T(n)<Cn+T(n-1)

|1|2|3|7|8|9|14| n-1

Total Runtime:
T(n) S i:CI:CEH:I | 1 | 2 | 3 7 | 8 | 9 | n-2
i=1 i=1 .

(n+1)n

= C

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most Cn

2157 oo [se]ss]
Recurrence:

T(n)<Cn+T(n-1)

|1|2|3|7|8|9|14| n-1

Total Runtime:

T(n)gi:CI:CEH:I |1|2|3 7|8|9| n-2
i=1 i=1 .

Quicksort: Best case

Best Case: |7|1|3|2|a|1a|9|14| n

|1|2|3|7| |9|14|16|<=n/2

o]] e

Dr Christian Konrad Runtime of Quicksort 5/ 10

Quicksort: Best case

Best Case: ny,n < 3 |7|1|3|2|a|1a|9|14| n

|1|2|3|7| |9|14|16|<=n/2

o]] e

Dr Christian Konrad Runtime of Quicksort 5/ 10

Quicksort: Best case

Best Case: ny,n < 3 |7|1|3|2|a|1a|9|14| n

Number of Levels: ¢

|1|2|3|7| |9|14|16|<=n/2

o]] e

Dr Christian Konrad Runtime of Quicksort 5/ 10

Quicksort: Best case

Best Case: ny,n < 3 |7|1|3|2|a|1a|9|14| n

Number of Levels: ¢

|1|2|3|7| |9|14|16|<=n/2

o]] e

@ Last level: n=1

Dr Christian Konrad Runtime of Quicksort 5/ 10

Quicksort: Best case

|7|1|3|2|8|16|9|14

n

Best Case: ny,nm < 3

Number of Levels: ¢

|1|2|3|7| |9|14|16|<=n/2

DoluRofcE

@ Last level: n=1

2(-1 < 1

Quicksort: Best case

|7|1|3|2|8|16|9|14

n

Best Case: ny,nm < 3

Number of Levels: ¢

|1|2|3|7| |9|14|16|<=n/2

DoluRofcE

@ Last level: n=1

2(-1 < 1

log(n) +1 </

Quicksort: Best case

|7|1|3|2|8|16|9|14

n

Best Case: ny,nm < 3

Number of Levels: ¢

|1|2|3|7| |9|14|16|<=n/2

DoluRofcE

@ Last level: n=1

2(-1 < 1

log(n) +1 </
@ Last but one level: n =2

Quicksort: Best case

|7|1|3|2|8|16|9|14

n

Best Case: ny,nm < 3

Number of Levels: ¢

|1|2|3|7| |9|14|16|<=n/2

@ Last level: n=1

s <1 6] <= s
log(n) +1 </

@ Last but one level: n =2

n

5 > 1

Quicksort: Best case

|7|1|3|2|8|16|9|14

n

Best Case: ny,nm < 3

Number of Levels: ¢

|1|2|3|7| |9|14|16|<=n/2

DoluRofcE

@ Last level: n=1

2(-1 < 1

log(n) +1 </
@ Last but one level: n =2
n

52~ 1 which implies log(n) +2 > ¢

Quicksort: Best case

|7|1|3|2|8|16|9|14|n

Best Case: ny,nm < 3

Number of Levels: ¢

|1|2|3|7| |9|14|16|<=n/2

DoluRofcE

@ Last level: n=1

2(-1 < 1

log(n) +1 < ¢
@ Last but one level: n =2
2%2 > 1 which implies log(n) +2 > ¢

@ Hence, there are ¢ = [log(n)| + 1 levels

Dr Christian Konrad Runtime of Quicksort 5/ 10

Quicksort: Best case

|7|1|3|2|8|16|9|14|n

Best Case: ny,nm < 3

Number of Levels: ¢

|1|2|3|7| |9|14|16|<=n/2

@ Last level: n=1

s <1 6] <= s
log(n) +1 </

@ Last but one level: n =2
2@% > 1 which implies log(n) +2 > ¢
@ Hence, there are ¢ = [log(n)| + 1 levels

Total Runtime:

Dr Christian Konrad Runtime of Quicksort 5/ 10

Quicksort: Best case

|7|1|3|2|8|16|9|14|n

Best Case: ny,nm < 3

Number of Levels: ¢
|1|2|3|7| |9|14|16|<=n/2

@ Last level: n=1

n

2(-1 < 1

log(n) +1 </
@ Last but one level: n =2

2%2 > 1 which implies log(n) +2 > ¢
@ Hence, there are ¢ = [log(n)] + 1 levels
Total Runtime:

@ Observe: Total runtime of Partition() in a level: O(n)

Dr Christian Konrad Runtime of Quicksort 5/ 10

Quicksort: Best case

|7|1|3|2|8|16|9|14|n

Best Case: ny,nm < 3

Number of Levels: ¢
|1|2|3|7| |9|14|16|<=n/2

@ Last level: n=1

n

2(-1 < 1

log(n) +1 </
@ Last but one level: n =2

25%2 > 1 which implies log(n) +2 > ¢
@ Hence, there are ¢ = [log(n)| + 1 levels

Total Runtime:
@ Observe: Total runtime of Partition() in a level: O(n)

e Total runtime: £- O(n) = O(nlog n)

Dr Christian Konrad Runtime of Quicksort 5/ 10

Runtime: Discussion

Good versus Bad Splits:

Dr Christian Konrad Runtime of Quicksort 6/ 10

Runtime: Discussion

Good versus Bad Splits:

@ It is crucial that subproblems are roughly balanced

Dr Christian Konrad Runtime of Quicksort 6/ 10

Runtime: Discussion

Good versus Bad Splits:
@ It is crucial that subproblems are roughly balanced

e In fact, enough if n; = Wloo” and np =n—1—ng to get a
runtime of O(nlog n)

Dr Christian Konrad Runtime of Quicksort 6/ 10

Runtime: Discussion

Good versus Bad Splits:
@ It is crucial that subproblems are roughly balanced

e In fact, enough if n; = Wloo” and np =n—1—ng to get a
runtime of O(nlog n)

@ Even enough if subproblems roughly balanced most of the time

Dr Christian Konrad Runtime of Quicksort 6/ 10

Runtime: Discussion

Good versus Bad Splits:
@ It is crucial that subproblems are roughly balanced

e In fact, enough if n; = Wloo” and np =n—1—ng to get a
runtime of O(nlog n)

@ Even enough if subproblems roughly balanced most of the time

@ In practice, this happens most of the time, QUICKSORT is
therefore usually very fast

Dr Christian Konrad Runtime of Quicksort 6/ 10

Runtime: Discussion

Good versus Bad Splits:
@ It is crucial that subproblems are roughly balanced

e In fact, enough if n; = Wloo” and np =n—1—ng to get a
runtime of O(nlog n)

@ Even enough if subproblems roughly balanced most of the time

@ In practice, this happens most of the time, QUICKSORT is
therefore usually very fast

Dr Christian Konrad Runtime of Quicksort 6/ 10

Good versus Bad Splits: Intuition and Rough Analysis

n
n/2 n/2
AN
n/4 n/4 n/4 n/4
/ \ [\ / \ [\

n/8 (| n/8(|n/8||n/8|[n/8||n/8||n/8||Nn/8

Only good splits: Recursion tree depth [logn| + 1

Dr Christian Konrad Runtime of Quicksort 7/ 10

Good versus Bad Splits: Intuition and Rough Analysis

N

n/2 n/2
I I
n/2 n/2
n/4 n/4 n/4 n/4
I I I I
n/4 n/4 n/4 n/4
/ \ / \ [\ / \

n/8||n/8||n/8||n/8||n/8||n/8|[n/8[[n/8

Good & bad splits alternate: Recursion tree depth 2-([log n]+1)

Dr Christian Konrad Runtime of Quicksort 7/ 10

Selecting good Pivots

Ideal Pivot:

Dr Christian Konrad Runtime of Quicksort 8/ 10

Selecting good Pivots

Ideal Pivot: Median

Dr Christian Konrad Runtime of Quicksort 8/ 10

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

Dr Christian Konrad Runtime of Quicksort 8/ 10

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

e To obtain runtime of O(nlogn), we can spend O(n) time to
select a good pivot

Dr Christian Konrad Runtime of Quicksort 8/ 10

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

e To obtain runtime of O(nlogn), we can spend O(n) time to
select a good pivot

@ There are O(n) time algorithms for finding the median

Dr Christian Konrad Runtime of Quicksort 8/ 10

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

e To obtain runtime of O(nlogn), we can spend O(n) time to
select a good pivot

@ There are O(n) time algorithms for finding the median

@ They are complicated and not efficient in practice

Dr Christian Konrad Runtime of Quicksort 8/ 10

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

e To obtain runtime of O(nlogn), we can spend O(n) time to
select a good pivot

@ There are O(n) time algorithms for finding the median
@ They are complicated and not efficient in practice

@ However, using such an algorithm gives O(nlog n) worst case
runtime!

Dr Christian Konrad Runtime of Quicksort 8/ 10

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

e To obtain runtime of O(nlogn), we can spend O(n) time to
select a good pivot

@ There are O(n) time algorithms for finding the median
@ They are complicated and not efficient in practice

@ However, using such an algorithm gives O(nlog n) worst case
runtime!

Idea that works in Practice:

Dr Christian Konrad Runtime of Quicksort 8/ 10

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

e To obtain runtime of O(nlogn), we can spend O(n) time to
select a good pivot

@ There are O(n) time algorithms for finding the median
@ They are complicated and not efficient in practice

@ However, using such an algorithm gives O(nlog n) worst case
runtime!

Idea that works in Practice: Select Pivot at random!

Dr Christian Konrad Runtime of Quicksort 8/ 10

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

e To obtain runtime of O(nlogn), we can spend O(n) time to
select a good pivot

@ There are O(n) time algorithms for finding the median
@ They are complicated and not efficient in practice

@ However, using such an algorithm gives O(nlog n) worst case
runtime!

Idea that works in Practice: Select Pivot at random!
(Implementation: exchange A[n — 1] with a uniform random
element A[i])

Dr Christian Konrad Runtime of Quicksort 8/ 10

Random Pivot Selection

Randomized Algorithm

Dr Christian Konrad Runtime of Quicksort 9/ 10

Random Pivot Selection

Randomized Algorithm

@ Randomized pivot selection turns Quicksort into a
Randomized Algorithm

Dr Christian Konrad Runtime of Quicksort 9/ 10

Random Pivot Selection

Randomized Algorithm

@ Randomized pivot selection turns Quicksort into a
Randomized Algorithm

@ Worst-case runtime:

Dr Christian Konrad Runtime of Quicksort 9/ 10

Random Pivot Selection

Randomized Algorithm

@ Randomized pivot selection turns Quicksort into a
Randomized Algorithm

o Worst-case runtime: still O(n?) (we may be unlucky!)

Dr Christian Konrad Runtime of Quicksort 9/ 10

Random Pivot Selection

Randomized Algorithm

@ Randomized pivot selection turns Quicksort into a
Randomized Algorithm

o Worst-case runtime: still O(n?) (we may be unlucky!)

o Expected runtime: Since we introduce randomness, the
runtime of the algorithm becomes a random variable

Dr Christian Konrad Runtime of Quicksort 9/ 10

Random Pivot Selection

Randomized Algorithm

@ Randomized pivot selection turns Quicksort into a
Randomized Algorithm

o Worst-case runtime: still O(n?) (we may be unlucky!)

o Expected runtime: Since we introduce randomness, the
runtime of the algorithm becomes a random variable

Definition (Bad Split)

Dr Christian Konrad Runtime of Quicksort 9/ 10

Random Pivot Selection

Randomized Algorithm

@ Randomized pivot selection turns Quicksort into a
Randomized Algorithm

o Worst-case runtime: still O(n?) (we may be unlucky!)

o Expected runtime: Since we introduce randomness, the
runtime of the algorithm becomes a random variable

Definition (Bad Split)
A split is bad if min{ny, no} < f5n.

Dr Christian Konrad Runtime of Quicksort 9/ 10

Random Pivot Selection

Randomized Algorithm

@ Randomized pivot selection turns Quicksort into a
Randomized Algorithm

o Worst-case runtime: still O(n?) (we may be unlucky!)

o Expected runtime: Since we introduce randomness, the
runtime of the algorithm becomes a random variable

Definition (Bad Split)
A split is bad if min{ny, no} < f5n.

If we select the pivot randomly, how likely is it to have a bad split?

Dr Christian Konrad Runtime of Quicksort 9/ 10

Probability of a Bad Split

Probability of a Bad Split

Dr Christian Konrad Runtime of Quicksort

Probability of a Bad Split

Probability of a Bad Split

@ Bad split if element chosen as pivot is either among smallest
0.1 fraction of elements or among largest 0.1 fraction

@ Since our choice is random, this happens with probability 0.2

Dr Christian Konrad Runtime of Quicksort 10/ 10

Probability of a Bad Split

Probability of a Bad Split

@ Bad split if element chosen as pivot is either among smallest
0.1 fraction of elements or among largest 0.1 fraction

@ Since our choice is random, this happens with probability 0.2

@ Hence, in average only 1 out of 5 splits are bad

Dr Christian Konrad Runtime of Quicksort 10/ 10

Probability of a Bad Split

Probability of a Bad Split

@ Bad split if element chosen as pivot is either among smallest
0.1 fraction of elements or among largest 0.1 fraction

@ Since our choice is random, this happens with probability 0.2
@ Hence, in average only 1 out of 5 splits are bad

@ Hence, 4 out of 5 times the algorithm makes enough progress

Dr Christian Konrad Runtime of Quicksort 10/ 10

Probability of a Bad Split

Probability of a Bad Split

@ Bad split if element chosen as pivot is either among smallest
0.1 fraction of elements or among largest 0.1 fraction

@ Since our choice is random, this happens with probability 0.2
@ Hence, in average only 1 out of 5 splits are bad

@ Hence, 4 out of 5 times the algorithm makes enough progress

Random Pivot Selection: QUICKSORT runs in expected time
O(nlog n) if the pivot is chosen uniformly at random

Dr Christian Konrad Runtime of Quicksort 10/ 10

