Runtime of Quicksort COMS10017 - Algorithms 1

Dr Christian Konrad

Quicksort

Require: array A of length n if $n \leq 1$ then return A else
$i \leftarrow \operatorname{Partition}(A)$
$\operatorname{Quicksort}(A[0, i-1])$
$\operatorname{Quicksort}(A[i+1, n-1])$
Algorithm Quicksort

Quicksort

Require: array A of length n if $n \leq 1$ then
return A
else
$i \leftarrow \operatorname{Partition}(A)$
$\operatorname{Quicksort}(A[0, i-1])$
$\operatorname{Quicksort}(A[i+1, n-1])$
Algorithm Quicksort
Partition A around a Pivot:

14	3	9	8	16	2	1	7	11	12	5

Quicksort

Require: array A of length n if $n \leq 1$ then return A else
$i \leftarrow \operatorname{Partition}(A)$
$\operatorname{Quicksort}(A[0, i-1])$
$\operatorname{Quicksort}(A[i+1, n-1])$
Algorithm Quicksort
Partition A around a Pivot:

Quicksort

Require: array A of length n if $n \leq 1$ then
return A else
$i \leftarrow \operatorname{Partition}(A)$
Quicksort (A[0,i-1])
$\operatorname{Quicksort}(A[i+1, n-1])$
Algorithm Quicksort
Partition A around a Pivot:

14	3	9	8	16	2	1	7	11	12	5

1	2	3	5	7	8	9	11	12	14	16

Runtime of Quicksort

Runtime:

Runtime of Quicksort

Runtime: $T(n)$: worst-case runtime on input of length n

Runtime of Quicksort

Runtime: $T(n)$: worst-case runtime on input of length n

$$
T(1)=O(1) \quad \text { (termination condition) }
$$

Runtime of Quicksort

Runtime: $T(n)$: worst-case runtime on input of length n

$$
\begin{aligned}
& T(1)=O(1) \quad \text { (termination condition) } \\
& T(n)=O(n)+T\left(n_{1}\right)+T\left(n_{2}\right)
\end{aligned}
$$

where n_{1}, n_{2} are the lengths of the two resulting subproblems.

Runtime of Quicksort

Runtime: $T(n)$: worst-case runtime on input of length n

$$
\begin{aligned}
& T(1)=O(1) \quad \text { (termination condition) } \\
& T(n)=O(n)+T\left(n_{1}\right)+T\left(n_{2}\right)
\end{aligned}
$$

where n_{1}, n_{2} are the lengths of the two resulting subproblems.

Observe: $n_{1}+n_{2}=n-1$

Runtime of Quicksort

Runtime: $T(n)$: worst-case runtime on input of length n

$$
\begin{aligned}
& T(1)=O(1) \quad \text { (termination condition) } \\
& T(n)=O(n)+T\left(n_{1}\right)+T\left(n_{2}\right)
\end{aligned}
$$

where n_{1}, n_{2} are the lengths of the two resulting subproblems.

Observe: $n_{1}+n_{2}=n-1$
Worst-case:

Runtime of Quicksort

Runtime: $T(n)$: worst-case runtime on input of length n

$$
\begin{aligned}
& T(1)=O(1) \quad \text { (termination condition) } \\
& T(n)=O(n)+T\left(n_{1}\right)+T\left(n_{2}\right)
\end{aligned}
$$

where n_{1}, n_{2} are the lengths of the two resulting subproblems.

Observe: $n_{1}+n_{2}=n-1$

Worst-case:

- Suppose that pivot is always the largest element

Runtime of Quicksort

Runtime: $T(n)$: worst-case runtime on input of length n

$$
\begin{aligned}
& T(1)=O(1) \quad \text { (termination condition) } \\
& T(n)=O(n)+T\left(n_{1}\right)+T\left(n_{2}\right)
\end{aligned}
$$

where n_{1}, n_{2} are the lengths of the two resulting subproblems.

Observe: $n_{1}+n_{2}=n-1$

Worst-case:

- Suppose that pivot is always the largest element
- Then, $n_{1}=n-1, n_{2}=0$

Runtime of Quicksort

Runtime: $T(n)$: worst-case runtime on input of length n

$$
\begin{aligned}
& T(1)=O(1) \quad \text { (termination condition) } \\
& T(n)=O(n)+T\left(n_{1}\right)+T\left(n_{2}\right)
\end{aligned}
$$

where n_{1}, n_{2} are the lengths of the two resulting subproblems.

Observe: $n_{1}+n_{2}=n-1$

Worst-case:

- Suppose that pivot is always the largest element
- Then, $n_{1}=n-1, n_{2}=0$

Best-case:

Runtime of Quicksort

Runtime: $T(n)$: worst-case runtime on input of length n

$$
\begin{aligned}
& T(1)=O(1) \quad \text { (termination condition) } \\
& T(n)=O(n)+T\left(n_{1}\right)+T\left(n_{2}\right)
\end{aligned}
$$

where n_{1}, n_{2} are the lengths of the two resulting subproblems.

Observe: $n_{1}+n_{2}=n-1$

Worst-case:

- Suppose that pivot is always the largest element
- Then, $n_{1}=n-1, n_{2}=0$

Best-case:

- Suppose pivot splits array evenly, i.e., pivot is the median

Runtime of Quicksort

Runtime: $T(n)$: worst-case runtime on input of length n

$$
\begin{aligned}
& T(1)=O(1) \quad \text { (termination condition) } \\
& T(n)=O(n)+T\left(n_{1}\right)+T\left(n_{2}\right)
\end{aligned}
$$

where n_{1}, n_{2} are the lengths of the two resulting subproblems.

Observe: $n_{1}+n_{2}=n-1$

Worst-case:

- Suppose that pivot is always the largest element
- Then, $n_{1}=n-1, n_{2}=0$

Best-case:

- Suppose pivot splits array evenly, i.e., pivot is the median
- Then, $n_{1}=\left\lfloor\frac{n-1}{2}\right\rfloor, n_{2}=\left\lceil\frac{n-1}{2}\right\rceil$

Quicksort: Worst case

Partition:

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most $C n$

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most $C n$

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most $C n$

Recurrence:

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most $C n$

Recurrence:

$$
T(n) \leq C n+T(n-1)
$$

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most $C n$

Recurrence:

$$
T(n) \leq C n+T(n-1)
$$

Total Runtime:

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most $C n$

Recurrence:

$$
T(n) \leq C n+T(n-1)
$$

Total Runtime:
$T(n)$

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most $C n$

Recurrence:

$$
T(n) \leq C n+T(n-1)
$$

Total Runtime:

$$
T(n) \leq \sum_{i=1}^{n} C i=C \sum_{i=1}^{n} i
$$

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most $C n$

Recurrence:

$$
T(n) \leq C n+T(n-1)
$$

Total Runtime:

$$
\begin{aligned}
T(n) & \leq \sum_{i=1}^{n} C i=C \sum_{i=1}^{n} i \\
& =C \frac{(n+1) n}{2}
\end{aligned}
$$

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most $C n$

Recurrence:

$$
T(n) \leq C n+T(n-1)
$$

Total Runtime:

$$
\begin{aligned}
T(n) & \leq \sum_{i=1}^{n} C i=C \sum_{i=1}^{n} i \\
& =C \frac{(n+1) n}{2} \\
& =\frac{C}{2}\left(n^{2}+n\right)
\end{aligned}
$$

Quicksort: Worst case

Partition: Let C be such that Partition() runs in time at most $C n$

Recurrence:

$$
T(n) \leq C n+T(n-1)
$$

Total Runtime:

$$
\begin{aligned}
T(n) & \leq \sum_{i=1}^{n} C i=C \sum_{i=1}^{n} i \\
& =C \frac{(n+1) n}{2} \\
& =\frac{C}{2}\left(n^{2}+n\right)=O\left(n^{2}\right)
\end{aligned}
$$

Quicksort: Best case

Best Case:

Quicksort: Best case

Best Case: $n_{1}, n_{2} \leq \frac{n}{2}$

Quicksort: Best case

Best Case: $n_{1}, n_{2} \leq \frac{n}{2}$
Number of Levels: ℓ

Quicksort: Best case

Best Case: $n_{1}, n_{2} \leq \frac{n}{2}$
Number of Levels: ℓ

- Last level: $n=1$

Quicksort: Best case

Best Case: $n_{1}, n_{2} \leq \frac{n}{2}$
Number of Levels: ℓ

- Last level: $n=1$

$$
\frac{n}{2^{\ell-1}} \leq 1
$$

Quicksort: Best case

Best Case: $n_{1}, n_{2} \leq \frac{n}{2}$
Number of Levels: ℓ

- Last level: $n=1$

$$
\begin{gathered}
\frac{n}{2^{\ell-1}} \leq 1 \\
\log (n)+1 \leq \ell
\end{gathered}
$$

Quicksort: Best case

Best Case: $n_{1}, n_{2} \leq \frac{n}{2}$
Number of Levels: ℓ

- Last level: $n=1$

$$
\begin{gathered}
\frac{n}{2^{\ell-1}} \leq 1 \\
\log (n)+1 \leq \ell
\end{gathered}
$$

Quicksort: Best case

Best Case: $n_{1}, n_{2} \leq \frac{n}{2}$
Number of Levels: ℓ

- Last level: $n=1$

$$
\begin{gathered}
\frac{n}{2^{\ell-1}} \leq 1 \\
\log (n)+1 \leq \ell
\end{gathered}
$$

- Last but one level: $n=2$

$$
\frac{n}{2^{\ell-2}}>1
$$

Quicksort: Best case

Best Case: $n_{1}, n_{2} \leq \frac{n}{2}$
Number of Levels: ℓ

- Last level: $n=1$

$$
\begin{gathered}
\frac{n}{2^{\ell-1}} \leq 1 \\
\log (n)+1 \leq \ell
\end{gathered}
$$

- Last but one level: $n=2$

$$
\frac{n}{2^{\ell-2}}>1 \text { which implies } \log (n)+2>\ell
$$

Quicksort: Best case

Best Case: $n_{1}, n_{2} \leq \frac{n}{2}$
Number of Levels: ℓ

- Last level: $n=1$

$$
\begin{gathered}
\frac{n}{2^{\ell-1}} \leq 1 \\
\log (n)+1 \leq \ell
\end{gathered}
$$

- Last but one level: $n=2$

$$
\frac{n}{2^{\ell-2}}>1 \text { which implies } \log (n)+2>\ell
$$

- Hence, there are $\ell=\lceil\log (n)\rceil+1$ levels

Quicksort: Best case

Best Case: $n_{1}, n_{2} \leq \frac{n}{2}$
Number of Levels: ℓ

- Last level: $n=1$

$$
\begin{gathered}
\frac{n}{2^{\ell-1}} \leq 1 \\
\log (n)+1 \leq \ell
\end{gathered}
$$

- Last but one level: $n=2$

$$
\frac{n}{2^{\ell-2}}>1 \text { which implies } \log (n)+2>\ell
$$

- Hence, there are $\ell=\lceil\log (n)\rceil+1$ levels

Total Runtime:

Quicksort: Best case

Best Case: $n_{1}, n_{2} \leq \frac{n}{2}$
Number of Levels: ℓ

- Last level: $n=1$

$$
\begin{gathered}
\frac{n}{2^{\ell-1}} \leq 1 \\
\log (n)+1 \leq \ell
\end{gathered}
$$

- Last but one level: $n=2$

$$
\frac{n}{2^{\ell-2}}>1 \text { which implies } \log (n)+2>\ell
$$

- Hence, there are $\ell=\lceil\log (n)\rceil+1$ levels

Total Runtime:

- Observe: Total runtime of Partition() in a level: $O(n)$

Quicksort: Best case

Best Case: $n_{1}, n_{2} \leq \frac{n}{2}$
Number of Levels: ℓ

- Last level: $n=1$

$$
\begin{gathered}
\frac{n}{2^{\ell-1}} \leq 1 \\
\log (n)+1 \leq \ell
\end{gathered}
$$

- Last but one level: $n=2$

$$
\frac{n}{2^{\ell-2}}>1 \text { which implies } \log (n)+2>\ell
$$

- Hence, there are $\ell=\lceil\log (n)\rceil+1$ levels

Total Runtime:

- Observe: Total runtime of Partition() in a level: $O(n)$
- Total runtime: $\ell \cdot O(n)=O(n \log n)$.

Runtime: Discussion

Good versus Bad Splits:

Runtime: Discussion

Good versus Bad Splits:

- It is crucial that subproblems are roughly balanced

Runtime: Discussion

Good versus Bad Splits:

- It is crucial that subproblems are roughly balanced
- In fact, enough if $n_{1}=\frac{1}{1000} n$ and $n_{2}=n-1-n_{1}$ to get a runtime of $O(n \log n)$

Runtime: Discussion

Good versus Bad Splits:

- It is crucial that subproblems are roughly balanced
- In fact, enough if $n_{1}=\frac{1}{1000} n$ and $n_{2}=n-1-n_{1}$ to get a runtime of $O(n \log n)$
- Even enough if subproblems roughly balanced most of the time

Runtime: Discussion

Good versus Bad Splits:

- It is crucial that subproblems are roughly balanced
- In fact, enough if $n_{1}=\frac{1}{1000} n$ and $n_{2}=n-1-n_{1}$ to get a runtime of $O(n \log n)$
- Even enough if subproblems roughly balanced most of the time
- In practice, this happens most of the time, Quicksort is therefore usually very fast

Runtime: Discussion

Good versus Bad Splits:

- It is crucial that subproblems are roughly balanced
- In fact, enough if $n_{1}=\frac{1}{1000} n$ and $n_{2}=n-1-n_{1}$ to get a runtime of $O(n \log n)$
- Even enough if subproblems roughly balanced most of the time
- In practice, this happens most of the time, Quicksort is therefore usually very fast

Good versus Bad Splits: Intuition and Rough Analysis

Only good splits: Recursion tree depth $\lceil\log n\rceil+1$

Good versus Bad Splits: Intuition and Rough Analysis

Good \& bad splits alternate: Recursion tree depth $2 \cdot(\lceil\log n\rceil+1)$

Selecting good Pivots

Ideal Pivot:

Selecting good Pivots

Ideal Pivot: Median

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

- To obtain runtime of $O(n \log n)$, we can spend $O(n)$ time to select a good pivot

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

- To obtain runtime of $O(n \log n)$, we can spend $O(n)$ time to select a good pivot
- There are $O(n)$ time algorithms for finding the median

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

- To obtain runtime of $O(n \log n)$, we can spend $O(n)$ time to select a good pivot
- There are $O(n)$ time algorithms for finding the median
- They are complicated and not efficient in practice

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

- To obtain runtime of $O(n \log n)$, we can spend $O(n)$ time to select a good pivot
- There are $O(n)$ time algorithms for finding the median
- They are complicated and not efficient in practice
- However, using such an algorithm gives $O(n \log n)$ worst case runtime!

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

- To obtain runtime of $O(n \log n)$, we can spend $O(n)$ time to select a good pivot
- There are $O(n)$ time algorithms for finding the median
- They are complicated and not efficient in practice
- However, using such an algorithm gives $O(n \log n)$ worst case runtime!

Idea that works in Practice:

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

- To obtain runtime of $O(n \log n)$, we can spend $O(n)$ time to select a good pivot
- There are $O(n)$ time algorithms for finding the median
- They are complicated and not efficient in practice
- However, using such an algorithm gives $O(n \log n)$ worst case runtime!

Idea that works in Practice: Select Pivot at random!

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

- To obtain runtime of $O(n \log n)$, we can spend $O(n)$ time to select a good pivot
- There are $O(n)$ time algorithms for finding the median
- They are complicated and not efficient in practice
- However, using such an algorithm gives $O(n \log n)$ worst case runtime!

Idea that works in Practice: Select Pivot at random! (Implementation: exchange $A[n-1]$ with a uniform random element $A[i]$)

Random Pivot Selection

Randomized Algorithm

Random Pivot Selection

Randomized Algorithm

- Randomized pivot selection turns Quicksort into a Randomized Algorithm

Random Pivot Selection

Randomized Algorithm

- Randomized pivot selection turns Quicksort into a Randomized Algorithm
- Worst-case runtime:

Random Pivot Selection

Randomized Algorithm

- Randomized pivot selection turns Quicksort into a Randomized Algorithm
- Worst-case runtime: still $O\left(n^{2}\right)$ (we may be unlucky!)

Random Pivot Selection

Randomized Algorithm

- Randomized pivot selection turns Quicksort into a Randomized Algorithm
- Worst-case runtime: still $O\left(n^{2}\right)$ (we may be unlucky!)
- Expected runtime: Since we introduce randomness, the runtime of the algorithm becomes a random variable

Random Pivot Selection

Randomized Algorithm

- Randomized pivot selection turns Quicksort into a Randomized Algorithm
- Worst-case runtime: still $O\left(n^{2}\right)$ (we may be unlucky!)
- Expected runtime: Since we introduce randomness, the runtime of the algorithm becomes a random variable

Definition (Bad Split)

Random Pivot Selection

Randomized Algorithm

- Randomized pivot selection turns Quicksort into a Randomized Algorithm
- Worst-case runtime: still $O\left(n^{2}\right)$ (we may be unlucky!)
- Expected runtime: Since we introduce randomness, the runtime of the algorithm becomes a random variable

Definition (Bad Split)
A split is bad if $\min \left\{n_{1}, n_{2}\right\} \leq \frac{1}{10} n$.

Random Pivot Selection

Randomized Algorithm

- Randomized pivot selection turns Quicksort into a Randomized Algorithm
- Worst-case runtime: still $O\left(n^{2}\right)$ (we may be unlucky!)
- Expected runtime: Since we introduce randomness, the runtime of the algorithm becomes a random variable

Definition (Bad Split)
A split is bad if $\min \left\{n_{1}, n_{2}\right\} \leq \frac{1}{10} n$.
If we select the pivot randomly, how likely is it to have a bad split?

Probability of a Bad Split

- Bad split if element chosen as pivot is either among smallest 0.1 fraction of elements or among largest 0.1 fraction
- Since our choice is random, this happens with probability 0.2

Probability of a Bad Split

Probability of a Bad Split

- Bad split if element chosen as pivot is either among smallest 0.1 fraction of elements or among largest 0.1 fraction
- Since our choice is random, this happens with probability 0.2
- Hence, in average only 1 out of 5 splits are bad

Probability of a Bad Split

Probability of a Bad Split

- Bad split if element chosen as pivot is either among smallest 0.1 fraction of elements or among largest 0.1 fraction
- Since our choice is random, this happens with probability 0.2
- Hence, in average only 1 out of 5 splits are bad
- Hence, 4 out of 5 times the algorithm makes enough progress

Probability of a Bad Split

Probability of a Bad Split

- Bad split if element chosen as pivot is either among smallest 0.1 fraction of elements or among largest 0.1 fraction
- Since our choice is random, this happens with probability 0.2
- Hence, in average only 1 out of 5 splits are bad
- Hence, 4 out of 5 times the algorithm makes enough progress

Random Pivot Selection: Quicksort runs in expected time $O(n \log n)$ if the pivot is chosen uniformly at random

