Runtime of Quicksort COMS10017 - Algorithms 1

Dr Christian Konrad

```
Require: array A of length n

if n \le 1 then

return A

else

i \leftarrow Partition(A)

QUICKSORT(A[0, i - 1])

QUICKSORT(A[i + 1, n - 1])
```

Algorithm QUICKSORT

Require: array A of length n if $n \le 1$ then return A else $i \leftarrow Partition(A)$ QUICKSORT(A[0, i - 1])QUICKSORT(A[i + 1, n - 1])

Algorithm QUICKSORT

Partition A around a Pivot:

	14	3	9	8	16	2	1	7	11	12	5
Т											

7

Require: array A of length n if $n \le 1$ then return A else $i \leftarrow Partition(A)$ QUICKSORT(A[0, i - 1])QUICKSORT(A[i + 1, n - 1])

Algorithm QUICKSORT

Partition A around a Pivot:

Require: array A of length n if $n \le 1$ then return A else $i \leftarrow Partition(A)$ QUICKSORT(A[0, i - 1])QUICKSORT(A[i + 1, n - 1])

Algorithm QUICKSORT

Partition A around a Pivot:

14	3	9	8	16	2	1	7	11	12	5

1	2	3	5	7	8	9	11	12	14	16
---	---	---	---	---	---	---	----	----	----	----

Runtime:

Runtime: T(n): worst-case runtime on input of length n

Runtime: T(n): worst-case runtime on input of length n

T(1) = O(1) (termination condition)

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1) \quad (\text{termination condition})$$

$$T(n) = O(n) + T(n_1) + T(n_2) ,$$

where n_1, n_2 are the lengths of the two resulting subproblems.

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1) \quad (\text{termination condition})$$

$$T(n) = O(n) + T(n_1) + T(n_2) ,$$

where n_1, n_2 are the lengths of the two resulting subproblems.

Observe: $n_1 + n_2 = n - 1$

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1) \quad (\text{termination condition})$$

$$T(n) = O(n) + T(n_1) + T(n_2) ,$$

where n_1, n_2 are the lengths of the two resulting subproblems.

Observe: $n_1 + n_2 = n - 1$

Worst-case:

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1) \quad (\text{termination condition})$$

$$T(n) = O(n) + T(n_1) + T(n_2) ,$$

where n_1, n_2 are the lengths of the two resulting subproblems.

Observe: $n_1 + n_2 = n - 1$

Worst-case:

• Suppose that pivot is always the largest element

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1) \quad (\text{termination condition})$$

$$T(n) = O(n) + T(n_1) + T(n_2) ,$$

where n_1, n_2 are the lengths of the two resulting subproblems.

Observe: $n_1 + n_2 = n - 1$

Worst-case:

Suppose that pivot is always the largest element

• Then,
$$n_1 = n - 1$$
, $n_2 = 0$

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1) \quad (\text{termination condition})$$

$$T(n) = O(n) + T(n_1) + T(n_2) ,$$

where n_1, n_2 are the lengths of the two resulting subproblems.

Observe: $n_1 + n_2 = n - 1$

Worst-case:

• Suppose that pivot is always the largest element

• Then,
$$n_1 = n - 1$$
, $n_2 = 0$

Best-case:

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1) \quad (\text{termination condition})$$

$$T(n) = O(n) + T(n_1) + T(n_2) ,$$

where n_1, n_2 are the lengths of the two resulting subproblems.

Observe: $n_1 + n_2 = n - 1$

Worst-case:

• Suppose that pivot is always the largest element

• Then,
$$n_1 = n - 1$$
, $n_2 = 0$

Best-case:

• Suppose pivot splits array evenly, i.e., pivot is the median

Runtime: T(n): worst-case runtime on input of length n

$$T(1) = O(1) \quad (\text{termination condition})$$

$$T(n) = O(n) + T(n_1) + T(n_2) ,$$

where n_1, n_2 are the lengths of the two resulting subproblems.

Observe: $n_1 + n_2 = n - 1$

Worst-case:

• Suppose that pivot is always the largest element

• Then,
$$n_1 = n - 1$$
, $n_2 = 0$

Best-case:

• Suppose pivot splits array evenly, i.e., pivot is the median

• Then,
$$n_1 = \lfloor \frac{n-1}{2} \rfloor$$
, $n_2 = \lceil \frac{n-1}{2} \rceil$

Partition:

Partition: Let C be such that Partition() runs in time at most Cn

4/10

Partition: Let C be such that Partition() runs in time at most Cn

Recurrence:

Partition: Let C be such that Partition() runs in time at most Cn

4 / 10

Partition: Let C be such that Partition() runs in time at most Cn

4 / 10

Best Case:

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Number of Levels: ℓ

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Number of Levels: ℓ

• Last level: n = 1

Best Case: $n_1, n_2 \leq \frac{n}{2}$

Number of Levels: ℓ

• Last level: n = 1

$$\frac{n}{2^{\ell-1}} \le 1$$

Best Case: $n_1, n_2 \leq \frac{n}{2}$ Number of Levels: ℓ • Last level: n = 1

$$\frac{n}{2^{\ell-1}} \le 1$$
$$\log(n) + 1 \le \ell$$

$$\frac{n}{2^{\ell-2}} > 1$$
 which implies $\log(n) + 2 > \ell$

• Hence, there are $\ell = \lceil \log(n) \rceil + 1$ levels

Total Runtime:

• Hence, there are $\ell = \lceil \log(n) \rceil + 1$ levels

Total Runtime:

• Observe: Total runtime of Partition() in a level: O(n)

$$\frac{n}{2^{\ell-2}} > 1$$
 which implies $\log(n) + 2 > \ell$

• Hence, there are $\ell = \lceil \log(n) \rceil + 1$ levels

Total Runtime:

- Observe: Total runtime of Partition() in a level: O(n)
- Total runtime: $\ell \cdot O(n) = O(n \log n)$.

• It is crucial that subproblems are roughly balanced

- It is crucial that subproblems are *roughly* balanced
- In fact, enough if $n_1 = \frac{1}{1000}n$ and $n_2 = n 1 n_1$ to get a runtime of $O(n \log n)$

- It is crucial that subproblems are *roughly* balanced
- In fact, enough if $n_1 = \frac{1}{1000}n$ and $n_2 = n 1 n_1$ to get a runtime of $O(n \log n)$
- Even enough if subproblems roughly balanced most of the time

- It is crucial that subproblems are *roughly* balanced
- In fact, enough if $n_1 = \frac{1}{1000}n$ and $n_2 = n 1 n_1$ to get a runtime of $O(n \log n)$
- Even enough if subproblems roughly balanced most of the time
- In practice, this happens most of the time, QUICKSORT is therefore usually very fast

- It is crucial that subproblems are *roughly* balanced
- In fact, enough if $n_1 = \frac{1}{1000}n$ and $n_2 = n 1 n_1$ to get a runtime of $O(n \log n)$
- Even enough if subproblems roughly balanced most of the time
- In practice, this happens most of the time, QUICKSORT is therefore usually very fast

Good versus Bad Splits: Intuition and Rough Analysis

. . .

Only good splits: Recursion tree depth $\lceil \log n \rceil + 1$

Good versus Bad Splits: Intuition and Rough Analysis

Good & bad splits alternate: Recursion tree depth $2 \cdot (\lceil \log n \rceil + 1)$

Selecting good Pivots

Ideal Pivot:

Selecting good Pivots

Ideal Pivot: Median

Pivot Selection

• To obtain runtime of $O(n \log n)$, we can spend O(n) time to select a good pivot

- To obtain runtime of $O(n \log n)$, we can spend O(n) time to select a good pivot
- There are O(n) time algorithms for finding the median

- To obtain runtime of $O(n \log n)$, we can spend O(n) time to select a good pivot
- There are O(n) time algorithms for finding the median
- They are complicated and not efficient in practice

- To obtain runtime of $O(n \log n)$, we can spend O(n) time to select a good pivot
- There are O(n) time algorithms for finding the median
- They are complicated and not efficient in practice
- However, using such an algorithm gives $O(n \log n)$ worst case runtime!

Pivot Selection

- To obtain runtime of $O(n \log n)$, we can spend O(n) time to select a good pivot
- There are O(n) time algorithms for finding the median
- They are complicated and not efficient in practice
- However, using such an algorithm gives $O(n \log n)$ worst case runtime!

Idea that works in Practice:

Pivot Selection

- To obtain runtime of $O(n \log n)$, we can spend O(n) time to select a good pivot
- There are O(n) time algorithms for finding the median
- They are complicated and not efficient in practice
- However, using such an algorithm gives $O(n \log n)$ worst case runtime!

Idea that works in Practice: Select Pivot at random!

Pivot Selection

- To obtain runtime of $O(n \log n)$, we can spend O(n) time to select a good pivot
- There are O(n) time algorithms for finding the median
- They are complicated and not efficient in practice
- However, using such an algorithm gives $O(n \log n)$ worst case runtime!

Idea that works in Practice: Select Pivot at random! (Implementation: exchange A[n-1] with a uniform random element A[i])

• Randomized pivot selection turns Quicksort into a *Randomized Algorithm*

- Randomized pivot selection turns Quicksort into a *Randomized Algorithm*
- Worst-case runtime:

- Randomized pivot selection turns Quicksort into a *Randomized Algorithm*
- Worst-case runtime: still $O(n^2)$ (we may be unlucky!)

- Randomized pivot selection turns Quicksort into a *Randomized Algorithm*
- Worst-case runtime: still $O(n^2)$ (we may be unlucky!)
- *Expected runtime*: Since we introduce randomness, the runtime of the algorithm becomes a random variable

- Randomized pivot selection turns Quicksort into a *Randomized Algorithm*
- Worst-case runtime: still $O(n^2)$ (we may be unlucky!)
- *Expected runtime*: Since we introduce randomness, the runtime of the algorithm becomes a random variable

Definition (Bad Split)

- Randomized pivot selection turns Quicksort into a *Randomized Algorithm*
- Worst-case runtime: still $O(n^2)$ (we may be unlucky!)
- *Expected runtime*: Since we introduce randomness, the runtime of the algorithm becomes a random variable

Definition (Bad Split) A split is *bad* if $\min\{n_1, n_2\} \le \frac{1}{10}n$.

- Randomized pivot selection turns Quicksort into a *Randomized Algorithm*
- Worst-case runtime: still $O(n^2)$ (we may be unlucky!)
- *Expected runtime*: Since we introduce randomness, the runtime of the algorithm becomes a random variable

Definition (Bad Split) A split is *bad* if $\min\{n_1, n_2\} \le \frac{1}{10}n$.

If we select the pivot randomly, how likely is it to have a bad split?

- Bad split if element chosen as pivot is either among smallest 0.1 fraction of elements or among largest 0.1 fraction
- Since our choice is random, this happens with probability 0.2

- Bad split if element chosen as pivot is either among smallest 0.1 fraction of elements or among largest 0.1 fraction
- Since our choice is random, this happens with probability 0.2
- Hence, in average only 1 out of 5 splits are bad

- Bad split if element chosen as pivot is either among smallest 0.1 fraction of elements or among largest 0.1 fraction
- Since our choice is random, this happens with probability 0.2
- Hence, in average only 1 out of 5 splits are bad
- Hence, 4 out of 5 times the algorithm makes enough progress

- Bad split if element chosen as pivot is either among smallest 0.1 fraction of elements or among largest 0.1 fraction
- Since our choice is random, this happens with probability 0.2
- Hence, in average only 1 out of 5 splits are bad
- Hence, 4 out of 5 times the algorithm makes enough progress

Random Pivot Selection: QUICKSORT runs in expected time $O(n \log n)$ if the pivot is chosen uniformly at random