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Require: array A of length n

if n <1 then
return A
else

i < Partition(A)

QUICKSORT (A0, i — 1])

QUICKSORT(A[i +1,n —1])
Algorithm QUICKSORT
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Runtime: T(n): worst-case runtime on input of length n

T(1) = 0(1) (termination condition)
T(n) = O(n) + T(nl) + T(ng) ,

where n1, ny are the lengths of the two resulting subproblems.

Observe: ni +np=n—1

Worst-case:

@ Suppose that pivot is always the largest element
@ Then,ni=n—1,n=0

Best-case:
@ Suppose pivot splits array evenly, i.e., pivot is the median

@ Then, n; = {"%IJ n = ("%11
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Ideal Pivot: Median

Pivot Selection

e To obtain runtime of O(nlogn), we can spend O(n) time to
select a good pivot

@ There are O(n) time algorithms for finding the median
@ They are complicated and not efficient in practice

@ However, using such an algorithm gives O(nlog n) worst case
runtime!

Idea that works in Practice: Select Pivot at random!
(Implementation: exchange A[n — 1] with a uniform random
element A[i])
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@ Randomized pivot selection turns Quicksort into a
Randomized Algorithm

o Worst-case runtime: still O(n?) (we may be unlucky!)

o Expected runtime: Since we introduce randomness, the
runtime of the algorithm becomes a random variable

Definition (Bad Split)
A split is bad if min{ny, no} < f5n.

If we select the pivot randomly, how likely is it to have a bad split?
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Probability of a Bad Split

@ Bad split if element chosen as pivot is either among smallest
0.1 fraction of elements or among largest 0.1 fraction

@ Since our choice is random, this happens with probability 0.2
@ Hence, in average only 1 out of 5 splits are bad

@ Hence, 4 out of 5 times the algorithm makes enough progress

Random Pivot Selection: QUICKSORT runs in expected time
O(nlog n) if the pivot is chosen uniformly at random
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