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Can we sort faster than O(n log n) time?

Recall: Fastest runtime of any sorting algorithm seen is O(n log n)

Can we sort faster?

Yes! sometimes, but not all algorithms can, and we generally
don’t know how to . . .

Example: Sort an array A ∈ {0, 1}n in time O(n)?

Count number of 0s n0

Write n0 0s followed by n − n0 1s

Both operations take time O(n)
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Comparison-based Sorting

Comparison-based Sorting

Order is determined solely by comparing input elements

All information obtained is by asking “Is A[i ] ≤ A[j ]?”, for
some i , j , in particular, we may not inspect the elements

Quicksort, Mergesort, Insertionsort, Heapsort are
comparison-based sorting algorithms

Lower Bound for Comparison-based Sorting

We will prove that every comparison-based sorting algorithm
requires Ω(n log n) comparisons

This implies that O(n log n) is an optimal runtime for
comparison-based sorting
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Lower Bound for Comparison-based Sorting

Problem

A : array of length n, all elements are different

We are only allowed to ask: Is A[i ] < A[j ], for any i , j ∈ [n]

How many questions are needed until we can determine the
order of all elements?

Permutations

A bijective function π : [n]→ [n] is called a permutation

π(1) = 3

π(2) = 2

π(3) = 4

π(4) = 1

A reordering of [n]
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Lower Bound for Comparison-based Sorting (2)

How many permutations are there?

Let Π be the set of all permutations on n elements

Lemma

|Π| = n! = n · (n − 1) . . . 3 · 2 · 1

Proof. The first element can be mapped to n potential elements.
The second can only be mapped to (n − 1) elements. etc.

Rephrasing our Task: Find permutation π ∈ Π such that:

A[π−1(1)] < A[π−1(2)] < · · · < A[π−1(n − 1)] < A[π−1(n)]
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Decision-tree Model

Example:

Sort 3 elements by asking queries: A[i ] < A[j ], for i , j ∈ {0, 1, 2}

How many Queries are needed? (worst case)

Lemma

At least 3 queries are needed to sort 3 elements.

Proof. Let the three elements be a, b, c. Suppose that the first
query is a < b and suppose that the answer is yes. (if it is not then
relabel the elements a, b, c). We are left with 3 scenarios:

1.a < b < c 2.a < c < b 3.c < a < b

Next we either ask a < c or b < c . Suppose that we ask a < c .
Then, if the answer is yes then we are left with cases 1 and 2 and
we need an additional query. Suppose that we ask b < c. Then, if
the answer is no then we are left with cases 2 and 3 and we need
an additional query.
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Decision-tree Model (2)

Every Guessing Strategy (and Sorting Algorithm) is a
Decision-tree

Observe:

Every leaf is a permutation

An execution is a root-to-leaf path
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Sorting Lower Bound

Lemma

Any comparison-based sorting algorithm requires Ω(n log n)
comparisons.

Proof Observe that decision-tree is a binary tree. Every potential
permutation is a leaf. There are n! leaves. A binary tree of height
h has no more than 2h leaves. Hence:

2h ≥ n!

h ≥ log(n!) ≥ log
(

(
n

e
)n
)

= n log(
n

e
) = Ω(n log n) .

Stirling’s approximation: n! ≥
(
n
e

)n
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