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Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

1 Divide the problem into a number of subproblems that are
smaller instances of the same problem

2 Conquer the subproblems by solving them recursively (if
subproblems have constant size, solve them directly)

3 Combine the solutions to the subproblems into the solution
for the original problem

Examples
Quicksort, Mergesort, maximum subarray algorithm, binary search,
Fast-Peak-Finding, . . .
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Example: Mergesort

Recall: Mergesort

Runtime: (assuming that n is a power of 2)

T (1) = O(1)

T (n) = 2T (n/2) + O(n)
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Example: Mergesort

Recall: Mergesort
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Split input array A of length n into subarrays A1 = A[0, ⌊n/2⌋]
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Example: Mergesort

Recall: Mergesort

1 Divide A → A1 and A2

2 Conquer
Sort A1 and A2 recursively using the same algorithm
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How to solve Recurrences?

Recurrences

Divide-and-Conquer algorithms naturally lead to recurrences

How can we solve them? Often only interested in asymptotic
upper bounds

Methods for solving recurrences

Substitution method
guess solution, verify, induction

Recursion-tree method (previously seen for Mergesort and
maximum subarray problem)
may have plenty of awkward details, provides good guess that
can be verified with substitution method

Master theorem
very powerful, cannot always be applied
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The Substitution Method

The Substitution Method

1 Guess the form of the solution

2 Use mathematical induction to find the constants and show
that the solution works

3 Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

Step 1. Guess good upper bound

T (n) ≤ Cn log n
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The Substitution Method (2)

Step 2. Substitute into the Recurrence

Assume that our guess T (n) ≤ Cn log n is correct for every
n′ < n

Corresponds to induction step of a proof by induction

T (n) ≤ 2T (n/2) + c2n ≤ 2C
n

2
log(

n

2
) + c2n

= Cn (log(n)− log(2)) + c2n

= Cn log n − Cn + c2n ≤ Cn log n ,

if we chose C ≥ c2. ✓

Verify the Base Case

T (1) ≤ C · 1 log(1) = 0 ≱ c1 ✗

The base case is a problem...
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Verify the Base Case
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The base case is a problem...
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The Substitution Method (3)

Recall: T (1) = c1 and T (n) = 2T (n/2) + c2n
Our guess: T (n) ≤ Cn log n (induction step holds for C ≥ c2)

Solution: Choose a different base case! n = 2

T (2) ≤ 2T (1) + 2c2 = 2c1 + 2c2 = 2(c2 + c1)

C2 log 2 = 2C

Hence, for every C ≥ c2 + c1, our guess holds for n = 2:

T (2) ≤ C2 log 2 .

Result

We proved T (n) ≤ Cn log n, for every n ≥ 2, when choosing
C ≥ c1 + c2
Observe: This implies T (n) ∈ O(n log n) (important)

Asymptotic notation allows us to chose arbitrary base case
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A Strange Problem

Example: Give an upper bound on the recurrence

T (1) = 1

T (n) = T (⌈n/2⌉) + T (⌊n/2⌋) + 1

Step 1: Guess correct solution T (n) ≤ f (n) := Cn

Step 2: Verify the solution

T (n) ≤ C⌈n/2⌉+ C⌊n/2⌋+ 1 = Cn + 1 ≰ f (n) ✗

We need a different guess

Let’s try: f1(n) := Cn + 1 and f2(n) := Cn − 1

f1 : T (n) ≤ C⌈n/2⌉+ 1 + C⌊n/2⌋+ 1 + 1 = Cn + 3 ≰ f1(n) ✗

f2 : T (n) ≤ C⌈n/2⌉ − 1 + C⌊n/2⌋ − 1 + 1 = Cn − 1 = f2(n) ✓

(holds for every positive C )
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A Strange Problem (2)

Verify Base Case for f2

We have: T (1) = 1 and f2(1) = C − 1 ≥ T (1) for C ≥ 2

We thus set the constant C in f2 to C = 2

Then f2(n) = 2n − 1 ≥ T (n) for every n ≥ 1

This implies that T (n) ∈ O(n)

Comments

Guessing right can be difficult and requires experience

However, recursion tree method can provide a good guess!
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