Recurrences I COMS10017 - Algorithms 1

Dr Christian Konrad

• **Divide** the problem into a number of subproblems that are smaller instances of the same problem

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem
- Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them *directly*)

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem
- Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them *directly*)
- Combine the solutions to the subproblems into the solution for the original problem

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem
- Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them *directly*)
- Combine the solutions to the subproblems into the solution for the original problem

Examples

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem
- Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them *directly*)
- Combine the solutions to the subproblems into the solution for the original problem

Examples Quicksort,

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem
- Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them *directly*)
- Combine the solutions to the subproblems into the solution for the original problem

Examples

Quicksort, Mergesort,

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem
- Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them *directly*)
- Combine the solutions to the subproblems into the solution for the original problem

Examples

Quicksort, Mergesort, maximum subarray algorithm,

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem
- Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them *directly*)
- Combine the solutions to the subproblems into the solution for the original problem

Examples

Quicksort, Mergesort, maximum subarray algorithm, binary search,

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem
- Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them *directly*)
- Combine the solutions to the subproblems into the solution for the original problem

Examples

Quicksort, Mergesort, maximum subarray algorithm, binary search, FAST-PEAK-FINDING, \ldots

Recall: Mergesort

Recall: Mergesort

Oivide

Split input array A of length n into subarrays $A_1 = A[0, \lfloor n/2 \rfloor]$ and $A_2 = A[\lfloor n/2 \rfloor + 1, n - 1]$

Recall: Mergesort

1 Divide $A \rightarrow A_1$ and A_2

Onquer

Sort A_1 and A_2 recursively using the same algorithm

Recall: Mergesort

- **1** Divide $A \rightarrow A_1$ and A_2
- **2** Conquer Solve A_1 and A_2

Combine

Combine sorted subarrays A_1 and A_2 and obtain sorted array A

Recall: Mergesort

- **1** Divide $A \rightarrow A_1$ and A_2
- **2** Conquer Solve A_1 and A_2

Combine

Combine sorted subarrays A_1 and A_2 and obtain sorted array A

Runtime: (assuming that *n* is a power of 2)

Recall: Mergesort

- **1** Divide $A \rightarrow A_1$ and A_2
- **2** Conquer Solve A_1 and A_2

Combine

Combine sorted subarrays A_1 and A_2 and obtain sorted array A

Runtime: (assuming that *n* is a power of 2)

$$T(1) = O(1)$$

Recall: Mergesort

- **1** Divide $A \rightarrow A_1$ and A_2
- **2** Conquer Solve A_1 and A_2

Combine

Combine sorted subarrays A_1 and A_2 and obtain sorted array A

Runtime: (assuming that *n* is a power of 2)

$$T(1) = O(1)$$

 $T(n) = 2T(n/2) + O(n)$

Recurrences

Recurrences

• Divide-and-Conquer algorithms naturally lead to recurrences

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we *solve* them?

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we *solve* them? Often only interested in asymptotic upper bounds

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we *solve* them? Often only interested in asymptotic upper bounds

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we *solve* them? Often only interested in asymptotic upper bounds

Methods for solving recurrences

Substitution method

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we *solve* them? Often only interested in asymptotic upper bounds

Methods for solving recurrences

• Substitution method guess solution, verify, induction

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we *solve* them? Often only interested in asymptotic upper bounds

- Substitution method guess solution, verify, induction
- Recursion-tree method (previously seen for Mergesort and maximum subarray problem)

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we *solve* them? Often only interested in asymptotic upper bounds

- Substitution method guess solution, verify, induction
- Recursion-tree method (previously seen for Mergesort and maximum subarray problem) may have plenty of awkward details, provides good guess that can be verified with substitution method

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we *solve* them? Often only interested in asymptotic upper bounds

- Substitution method guess solution, verify, induction
- Recursion-tree method (previously seen for Mergesort and maximum subarray problem) may have plenty of awkward details, provides good guess that can be verified with substitution method
- Master theorem

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we *solve* them? Often only interested in asymptotic upper bounds

Methods for solving recurrences

- Substitution method guess solution, verify, induction
- Recursion-tree method (previously seen for Mergesort and maximum subarray problem) may have plenty of awkward details, provides good guess that can be verified with substitution method
- Master theorem

very powerful, cannot always be applied

The Substitution Method

The Substitution Method

Guess the form of the solution

The Substitution Method

- Guess the form of the solution
- Ose mathematical induction to find the constants and show that the solution works

The Substitution Method

- Guess the form of the solution
- Ose mathematical induction to find the constants and show that the solution works
- Method provides an upper bound on the recurrence

The Substitution Method

- Guess the form of the solution
- Ose mathematical induction to find the constants and show that the solution works
- Method provides an upper bound on the recurrence

Example (suppose *n* is always a power of two)

The Substitution Method

- Guess the form of the solution
- Ose mathematical induction to find the constants and show that the solution works
- Method provides an upper bound on the recurrence

Example (suppose *n* is always a power of two)

$$T(1) = O(1)$$

 $T(n) = 2T(n/2) + O(n)$

The Substitution Method

- Guess the form of the solution
- Ose mathematical induction to find the constants and show that the solution works
- Method provides an upper bound on the recurrence

Example (suppose *n* is always a power of two)

$$T(1) \leq c_1 T(n) \leq 2T(n/2) + c_2 n$$

Eliminate O-notation in recurrence

The Substitution Method

- Guess the form of the solution
- Ose mathematical induction to find the constants and show that the solution works
- Method provides an upper bound on the recurrence

Example (suppose *n* is always a power of two)

$$T(1) \leq c_1 T(n) \leq 2T(n/2) + c_2 n$$

Eliminate O-notation in recurrence

Step 1. Guess good upper bound

The Substitution Method

- Guess the form of the solution
- Ose mathematical induction to find the constants and show that the solution works
- Method provides an upper bound on the recurrence

Example (suppose *n* is always a power of two)

$$T(1) \leq c_1 T(n) \leq 2T(n/2) + c_2 n$$

Eliminate O-notation in recurrence

Step 1. Guess good upper bound

 $T(n) \leq Cn \log n$

Step 2. Substitute into the Recurrence

• Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

T(n)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

 $T(n) \leq 2T(n/2) + c_2 n$

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

$$T(n) \leq 2T(n/2) + c_2n \leq 2C\frac{n}{2}\log(\frac{n}{2}) + c_2n$$

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

$$T(n) \leq 2T(n/2) + c_2 n \leq 2C \frac{n}{2} \log(\frac{n}{2}) + c_2 n$$

= $Cn (\log(n) - \log(2)) + c_2 n$

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

$$T(n) \leq 2T(n/2) + c_2n \leq 2C\frac{n}{2}\log(\frac{n}{2}) + c_2n$$

= $Cn(\log(n) - \log(2)) + c_2n$
= $Cn\log n - Cn + c_2n$

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

$$T(n) \leq 2T(n/2) + c_2n \leq 2C\frac{n}{2}\log(\frac{n}{2}) + c_2n$$

= $Cn(\log(n) - \log(2)) + c_2n$
= $Cn\log n - Cn + c_2n \leq Cn\log n$,

if we chose $C \ge c_2$.

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

$$T(n) \leq 2T(n/2) + c_2n \leq 2C\frac{n}{2}\log(\frac{n}{2}) + c_2n$$

= $Cn(\log(n) - \log(2)) + c_2n$
= $Cn\log n - Cn + c_2n \leq Cn\log n$,

if we chose $C \ge c_2$. \checkmark

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

$$T(n) \leq 2T(n/2) + c_2n \leq 2C\frac{n}{2}\log(\frac{n}{2}) + c_2n$$

= $Cn(\log(n) - \log(2)) + c_2n$
= $Cn\log n - Cn + c_2n \leq Cn\log n$,

if we chose $C \ge c_2$. \checkmark

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

$$T(n) \leq 2T(n/2) + c_2n \leq 2C\frac{n}{2}\log(\frac{n}{2}) + c_2n$$

= $Cn(\log(n) - \log(2)) + c_2n$
= $Cn\log n - Cn + c_2n \leq Cn\log n$,

if we chose $C \ge c_2$. \checkmark

Verify the Base Case

T(1)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

$$T(n) \leq 2T(n/2) + c_2n \leq 2C\frac{n}{2}\log(\frac{n}{2}) + c_2n$$

= $Cn(\log(n) - \log(2)) + c_2n$
= $Cn\log n - Cn + c_2n \leq Cn\log n$,

if we chose $C \ge c_2$. \checkmark

$$T(1) \leq C \cdot 1 \log(1)$$

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

$$T(n) \leq 2T(n/2) + c_2n \leq 2C\frac{n}{2}\log(\frac{n}{2}) + c_2n$$

= $Cn(\log(n) - \log(2)) + c_2n$
= $Cn\log n - Cn + c_2n \leq Cn\log n$,

if we chose $C \ge c_2$. \checkmark

$$T(1) \leq C \cdot 1 \log(1) = 0$$

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

$$T(n) \leq 2T(n/2) + c_2n \leq 2C\frac{n}{2}\log(\frac{n}{2}) + c_2n$$

= $Cn(\log(n) - \log(2)) + c_2n$
= $Cn\log n - Cn + c_2n \leq Cn\log n$,

if we chose $C \ge c_2$. \checkmark

$$\mathcal{T}(1) \leq \mathcal{C} \cdot 1 \log(1) = 0
eq c_1$$

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

$$T(n) \leq 2T(n/2) + c_2n \leq 2C\frac{n}{2}\log(\frac{n}{2}) + c_2n$$

= $Cn(\log(n) - \log(2)) + c_2n$
= $Cn\log n - Cn + c_2n \leq Cn\log n$,

if we chose $C \ge c_2$. \checkmark

$$\mathcal{T}(1) \leq \mathcal{C} \cdot 1 \log(1) = 0
eq c_1$$
 X

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq Cn \log n$ is correct for every n' < n
- Corresponds to induction step of a proof by induction

$$T(n) \leq 2T(n/2) + c_2n \leq 2C\frac{n}{2}\log(\frac{n}{2}) + c_2n$$

= $Cn(\log(n) - \log(2)) + c_2n$
= $Cn\log n - Cn + c_2n \leq Cn\log n$,

if we chose $C \ge c_2$. \checkmark

Verify the Base Case

$$\mathcal{T}(1) \leq \mathcal{C} \cdot 1 \log(1) = 0
eq c_1$$
 X

The base case is a problem...

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \leq Cn \log n$ (induction step holds for $C \geq c_2$)

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \leq Cn \log n$ (induction step holds for $C \geq c_2$)

Solution:

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \leq Cn \log n$ (induction step holds for $C \geq c_2$)

Solution: Choose a different base case! n = 2

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \leq Cn \log n$ (induction step holds for $C \geq c_2$)

Solution: Choose a different base case! n = 2

T(2)

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \leq Cn \log n$ (induction step holds for $C \geq c_2$)

Solution: Choose a different base case! n = 2

 $T(2) \leq 2T(1) + 2c_2$

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \leq Cn \log n$ (induction step holds for $C \geq c_2$)

Solution: Choose a different base case! n = 2

$$T(2) \leq 2T(1) + 2c_2 = 2c_1 + 2c_2$$

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \leq Cn \log n$ (induction step holds for $C \geq c_2$)

Solution: Choose a different base case! n = 2

$$T(2) \leq 2T(1) + 2c_2 = 2c_1 + 2c_2 = 2(c_2 + c_1)$$

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \leq Cn \log n$ (induction step holds for $C \geq c_2$)

Solution: Choose a different base case! n = 2

 $T(2) \leq 2T(1) + 2c_2 = 2c_1 + 2c_2 = 2(c_2 + c_1)$ C2 log 2

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \leq Cn \log n$ (induction step holds for $C \geq c_2$)

Solution: Choose a different base case! n = 2

$$T(2) \leq 2T(1) + 2c_2 = 2c_1 + 2c_2 = 2(c_2 + c_1)$$

 $C2 \log 2 = 2C$

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \leq Cn \log n$ (induction step holds for $C \geq c_2$)

Solution: Choose a different base case! n = 2

$$T(2) \leq 2T(1) + 2c_2 = 2c_1 + 2c_2 = 2(c_2 + c_1)$$

 $C2 \log 2 = 2C$

Hence, for every $C \ge c_2 + c_1$, our guess holds for n = 2:

 $T(2) \leq C2 \log 2$.

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \leq Cn \log n$ (induction step holds for $C \geq c_2$)

Solution: Choose a different base case! n = 2

$$T(2) \leq 2T(1) + 2c_2 = 2c_1 + 2c_2 = 2(c_2 + c_1)$$

 $C2 \log 2 = 2C$

Hence, for every $C \ge c_2 + c_1$, our guess holds for n = 2:

 $T(2) \leq C2 \log 2$.

Result

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \leq Cn \log n$ (induction step holds for $C \geq c_2$)

Solution: Choose a different base case! n = 2

$$T(2) \leq 2T(1) + 2c_2 = 2c_1 + 2c_2 = 2(c_2 + c_1)$$

 $C2 \log 2 = 2C$

Hence, for every $C \ge c_2 + c_1$, our guess holds for n = 2:

 $T(2) \leq C2 \log 2 \; .$

Result

• We proved $T(n) \leq Cn \log n$, for every $n \geq 2$, when choosing $C \geq c_1 + c_2$

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \leq Cn \log n$ (induction step holds for $C \geq c_2$)

Solution: Choose a different base case! n = 2

$$T(2) \leq 2T(1) + 2c_2 = 2c_1 + 2c_2 = 2(c_2 + c_1)$$

 $C2 \log 2 = 2C$

Hence, for every $C \ge c_2 + c_1$, our guess holds for n = 2:

 $T(2) \leq C2 \log 2 \; .$

Result

- We proved $T(n) \leq Cn \log n$, for every $n \geq 2$, when choosing $C \geq c_1 + c_2$
- **Observe:** This implies $T(n) \in O(n \log n)$ (important)

Recall: $T(1) = c_1$ and $T(n) = 2T(n/2) + c_2n$ Our guess: $T(n) \leq Cn \log n$ (induction step holds for $C \geq c_2$)

Solution: Choose a different base case! n = 2

$$T(2) \leq 2T(1) + 2c_2 = 2c_1 + 2c_2 = 2(c_2 + c_1)$$

 $C2 \log 2 = 2C$

Hence, for every $C \ge c_2 + c_1$, our guess holds for n = 2:

 $T(2) \leq C2 \log 2 \; .$

Result

- We proved $T(n) \leq Cn \log n$, for every $n \geq 2$, when choosing $C \geq c_1 + c_2$
- **Observe:** This implies $T(n) \in O(n \log n)$ (important)

Asymptotic notation allows us to chose arbitrary base case

A Strange Problem

A Strange Problem

Example: Give an upper bound on the recurrence

A Strange Problem

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

T(n)

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

 $T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1$

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

 $T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1$

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

$$T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1 \nleq f(n) \checkmark$$

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

 $T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1 \nleq f(n) X$

• We need a different guess

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

 $T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1 \nleq f(n) X$

- We need a different guess
- Let's try: $f_1(n) := Cn + 1$ and $f_2(n) := Cn 1$

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

 $T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1 \nleq f(n) X$

- We need a different guess
- Let's try: $f_1(n) := Cn + 1$ and $f_2(n) := Cn 1$

 f_1 : T(n)

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

 $T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1 \nleq f(n) X$

- We need a different guess
- Let's try: $f_1(n) := Cn + 1$ and $f_2(n) := Cn 1$

 $f_1: T(n) \leq C[n/2] + 1 + C[n/2] + 1 + 1$

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

 $T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1 \nleq f(n) X$

- We need a different guess
- Let's try: $f_1(n) := Cn + 1$ and $f_2(n) := Cn 1$

 $f_1: T(n) \leq C[n/2] + 1 + C[n/2] + 1 + 1 = Cn + 3$

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

 $T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1 \nleq f(n) X$

- We need a different guess
- Let's try: $f_1(n) := Cn + 1$ and $f_2(n) := Cn 1$

 $f_1: T(n) \leq C\lceil n/2 \rceil + 1 + C\lfloor n/2 \rfloor + 1 + 1 = Cn + 3 \nleq f_1(n)$

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

 $T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1 \nleq f(n) X$

- We need a different guess
- Let's try: $f_1(n) := Cn + 1$ and $f_2(n) := Cn 1$

 $f_1: T(n) \leq C\lceil n/2 \rceil + 1 + C\lfloor n/2 \rfloor + 1 + 1 = Cn + 3 \nleq f_1(n) X$

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

 $T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1 \nleq f(n) X$

- We need a different guess
- Let's try: $f_1(n) := Cn + 1$ and $f_2(n) := Cn 1$

 $f_1: T(n) \leq C[n/2] + 1 + C[n/2] + 1 + 1 = Cn + 3 \nleq f_1(n) \times f_2: T(n)$

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

 $T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1 \nleq f(n) X$

- We need a different guess
- Let's try: $f_1(n) := Cn + 1$ and $f_2(n) := Cn 1$

 $\begin{array}{rcl} f_1: T(n) & \leq & C \lceil n/2 \rceil + 1 + C \lfloor n/2 \rfloor + 1 + 1 = Cn + 3 \nleq f_1(n) \ \varkappa \\ f_2: T(n) & \leq & C \lceil n/2 \rceil - 1 + C \lfloor n/2 \rfloor - 1 + 1 \end{array}$

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

 $T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1 \nleq f(n) X$

- We need a different guess
- Let's try: $f_1(n) := Cn + 1$ and $f_2(n) := Cn 1$

 $\begin{array}{rcl} f_1: T(n) & \leq & C\lceil n/2 \rceil + 1 + C\lfloor n/2 \rfloor + 1 + 1 = Cn + 3 \nleq f_1(n) \ \varkappa \\ f_2: T(n) & \leq & C\lceil n/2 \rceil - 1 + C\lfloor n/2 \rfloor - 1 + 1 = Cn - 1 \end{array}$

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

 $T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1 \nleq f(n) X$

- We need a different guess
- Let's try: $f_1(n) := Cn + 1$ and $f_2(n) := Cn 1$

 $\begin{array}{rcl} f_1: T(n) & \leq & C \lceil n/2 \rceil + 1 + C \lfloor n/2 \rfloor + 1 + 1 = Cn + 3 \nleq f_1(n) \And \\ f_2: T(n) & \leq & C \lceil n/2 \rceil - 1 + C \lfloor n/2 \rfloor - 1 + 1 = Cn - 1 = f_2(n) \end{array}$

Example: Give an upper bound on the recurrence

$$T(1) = 1$$

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

Step 1: Guess correct solution $T(n) \leq f(n) := Cn$

Step 2: Verify the solution

 $T(n) \leq C\lceil n/2 \rceil + C\lfloor n/2 \rfloor + 1 = Cn + 1 \nleq f(n) X$

- We need a different guess
- Let's try: $f_1(n) := Cn + 1$ and $f_2(n) := Cn 1$

 $f_1: T(n) \leq C\lceil n/2 \rceil + 1 + C\lfloor n/2 \rfloor + 1 + 1 = Cn + 3 \leq f_1(n) \times f_2: T(n) \leq C\lceil n/2 \rceil - 1 + C\lfloor n/2 \rfloor - 1 + 1 = Cn - 1 = f_2(n) \checkmark$

(holds for every positive *C*)

• We have: T(1) = 1 and $f_2(1) = C - 1 \ge T(1)$ for $C \ge 2$

- We have: T(1) = 1 and $f_2(1) = C 1 \ge T(1)$ for $C \ge 2$
- We thus set the constant C in f_2 to C = 2

- We have: T(1) = 1 and $f_2(1) = C 1 \ge T(1)$ for $C \ge 2$
- We thus set the constant C in f_2 to C = 2
- Then $f_2(n) = 2n 1 \ge T(n)$ for every $n \ge 1$

- We have: T(1) = 1 and $f_2(1) = C 1 \ge T(1)$ for $C \ge 2$
- We thus set the constant C in f_2 to C = 2
- Then $f_2(n) = 2n 1 \ge T(n)$ for every $n \ge 1$
- This implies that $T(n) \in O(n)$

- We have: T(1) = 1 and $f_2(1) = C 1 \ge T(1)$ for $C \ge 2$
- We thus set the constant C in f_2 to C = 2
- Then $f_2(n) = 2n 1 \ge T(n)$ for every $n \ge 1$
- This implies that $T(n) \in O(n)$

Comments

- We have: T(1) = 1 and $f_2(1) = C 1 \ge T(1)$ for $C \ge 2$
- We thus set the constant C in f_2 to C = 2
- Then $f_2(n) = 2n 1 \ge T(n)$ for every $n \ge 1$
- This implies that $T(n) \in O(n)$

Comments

• Guessing right can be difficult and requires experience

- We have: T(1) = 1 and $f_2(1) = C 1 \ge T(1)$ for $C \ge 2$
- We thus set the constant C in f_2 to C = 2
- Then $f_2(n) = 2n 1 \ge T(n)$ for every $n \ge 1$
- This implies that $T(n) \in O(n)$

Comments

- Guessing right can be difficult and requires experience
- However, recursion tree method can provide a good guess!