Recurrences I
 COMS10017 - Algorithms 1

Dr Christian Konrad

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

(1) Divide the problem into a number of subproblems that are smaller instances of the same problem

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

(1) Divide the problem into a number of subproblems that are smaller instances of the same problem
(2) Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them directly)

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

(1) Divide the problem into a number of subproblems that are smaller instances of the same problem
(2) Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them directly)
(3) Combine the solutions to the subproblems into the solution for the original problem

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

(1) Divide the problem into a number of subproblems that are smaller instances of the same problem
(2) Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them directly)
(3) Combine the solutions to the subproblems into the solution for the original problem

Examples

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

(1) Divide the problem into a number of subproblems that are smaller instances of the same problem
(2) Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them directly)
(3) Combine the solutions to the subproblems into the solution for the original problem

Examples
 Quicksort,

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

(1) Divide the problem into a number of subproblems that are smaller instances of the same problem
(2) Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them directly)
(3) Combine the solutions to the subproblems into the solution for the original problem

Examples
Quicksort, Mergesort,

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

(1) Divide the problem into a number of subproblems that are smaller instances of the same problem
(2) Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them directly)
(3) Combine the solutions to the subproblems into the solution for the original problem

Examples

Quicksort, Mergesort, maximum subarray algorithm,

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

(1) Divide the problem into a number of subproblems that are smaller instances of the same problem
(2) Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them directly)
(3) Combine the solutions to the subproblems into the solution for the original problem

Examples

Quicksort, Mergesort, maximum subarray algorithm, binary search,

Divide-and-conquer Algorithms

Algorithmic Design Principle: Divide-and-conquer

(1) Divide the problem into a number of subproblems that are smaller instances of the same problem
(2) Conquer the subproblems by solving them recursively (if subproblems have constant size, solve them directly)
(3) Combine the solutions to the subproblems into the solution for the original problem

Examples

Quicksort, Mergesort, maximum subarray algorithm, binary search, Fast-Peak-Finding, ...

Example: Mergesort

Recall: Mergesort

Example: Mergesort

Recall: Mergesort

(1) Divide

Split input array A of length n into subarrays $A_{1}=A[0,\lfloor n / 2\rfloor]$ and $A_{2}=A[\lfloor n / 2\rfloor+1, n-1]$

Example: Mergesort

Recall: Mergesort

(1) Divide $A \rightarrow A_{1}$ and A_{2}
(2) Conquer

Sort A_{1} and A_{2} recursively using the same algorithm

Example: Mergesort

Recall: Mergesort

(1) Divide $A \rightarrow A_{1}$ and A_{2}
(2) Conquer Solve A_{1} and A_{2}
(3) Combine

Combine sorted subarrays A_{1} and A_{2} and obtain sorted array A

Example: Mergesort

Recall: Mergesort

(1) Divide $A \rightarrow A_{1}$ and A_{2}
(2) Conquer Solve A_{1} and A_{2}
(3) Combine

Combine sorted subarrays A_{1} and A_{2} and obtain sorted array A

Runtime: (assuming that n is a power of 2)

Example: Mergesort

Recall: Mergesort

(1) Divide $A \rightarrow A_{1}$ and A_{2}
(2) Conquer Solve A_{1} and A_{2}
(3) Combine

Combine sorted subarrays A_{1} and A_{2} and obtain sorted array A

Runtime: (assuming that n is a power of 2)

$$
T(1)=O(1)
$$

Example: Mergesort

Recall: Mergesort

(1) Divide $A \rightarrow A_{1}$ and A_{2}
(2) Conquer Solve A_{1} and A_{2}
(3) Combine

Combine sorted subarrays A_{1} and A_{2} and obtain sorted array A

Runtime: (assuming that n is a power of 2)

$$
\begin{aligned}
& T(1)=O(1) \\
& T(n)=2 T(n / 2)+O(n)
\end{aligned}
$$

How to solve Recurrences?

Recurrences

How to solve Recurrences?

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences

How to solve Recurrences?

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we solve them?

How to solve Recurrences?

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we solve them? Often only interested in asymptotic upper bounds

How to solve Recurrences?

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we solve them? Often only interested in asymptotic upper bounds

Methods for solving recurrences

How to solve Recurrences?

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we solve them? Often only interested in asymptotic upper bounds

Methods for solving recurrences

- Substitution method

How to solve Recurrences?

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we solve them? Often only interested in asymptotic upper bounds

Methods for solving recurrences

- Substitution method guess solution, verify, induction

How to solve Recurrences?

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we solve them? Often only interested in asymptotic upper bounds

Methods for solving recurrences

- Substitution method guess solution, verify, induction
- Recursion-tree method (previously seen for Mergesort and maximum subarray problem)

How to solve Recurrences?

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we solve them? Often only interested in asymptotic upper bounds

Methods for solving recurrences

- Substitution method guess solution, verify, induction
- Recursion-tree method (previously seen for Mergesort and maximum subarray problem)
may have plenty of awkward details, provides good guess that can be verified with substitution method

How to solve Recurrences?

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we solve them? Often only interested in asymptotic upper bounds

Methods for solving recurrences

- Substitution method guess solution, verify, induction
- Recursion-tree method (previously seen for Mergesort and maximum subarray problem)
may have plenty of awkward details, provides good guess that can be verified with substitution method
- Master theorem

How to solve Recurrences?

Recurrences

- Divide-and-Conquer algorithms naturally lead to recurrences
- How can we solve them? Often only interested in asymptotic upper bounds

Methods for solving recurrences

- Substitution method guess solution, verify, induction
- Recursion-tree method (previously seen for Mergesort and maximum subarray problem)
may have plenty of awkward details, provides good guess that can be verified with substitution method
- Master theorem
very powerful, cannot always be applied

The Substitution Method

The Substitution Method

The Substitution Method

The Substitution Method
(1) Guess the form of the solution

The Substitution Method

The Substitution Method
(1) Guess the form of the solution
(2) Use mathematical induction to find the constants and show that the solution works

The Substitution Method

The Substitution Method
(1) Guess the form of the solution
(2) Use mathematical induction to find the constants and show that the solution works
(3) Method provides an upper bound on the recurrence

The Substitution Method

The Substitution Method
(1) Guess the form of the solution
(2) Use mathematical induction to find the constants and show that the solution works
(3) Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

The Substitution Method

The Substitution Method
(1) Guess the form of the solution
(2) Use mathematical induction to find the constants and show that the solution works
(3) Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

$$
\begin{aligned}
& T(1)=O(1) \\
& T(n)=2 T(n / 2)+O(n)
\end{aligned}
$$

The Substitution Method

The Substitution Method
(1) Guess the form of the solution
(2) Use mathematical induction to find the constants and show that the solution works
(3) Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n
\end{aligned}
$$

Eliminate O-notation in recurrence

The Substitution Method

The Substitution Method
(1) Guess the form of the solution
(2) Use mathematical induction to find the constants and show that the solution works
(3) Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n
\end{aligned}
$$

Eliminate O-notation in recurrence

Step 1. Guess good upper bound

The Substitution Method

The Substitution Method
(1) Guess the form of the solution
(2) Use mathematical induction to find the constants and show that the solution works
(3) Method provides an upper bound on the recurrence

Example (suppose n is always a power of two)

$$
\begin{aligned}
& T(1) \leq c_{1} \\
& T(n) \leq 2 T(n / 2)+c_{2} n
\end{aligned}
$$

Eliminate O-notation in recurrence
Step 1. Guess good upper bound

$$
T(n) \leq C n \log n
$$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
T(n)
$$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
T(n) \leq 2 T(n / 2)+c_{2} n
$$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
T(n) \leq 2 T(n / 2)+c_{2} n \leq 2 C \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{2} n
$$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{2} n \leq 2 C \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{2} n \\
& =C n(\log (n)-\log (2))+c_{2} n
\end{aligned}
$$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{2} n \leq 2 C \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{2} n \\
& =C n(\log (n)-\log (2))+c_{2} n \\
& =C n \log n-C n+c_{2} n
\end{aligned}
$$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{2} n \leq 2 C \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{2} n \\
& =C n(\log (n)-\log (2))+c_{2} n \\
& =C n \log n-C n+c_{2} n \leq C n \log n
\end{aligned}
$$

if we chose $C \geq c_{2}$.

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{2} n \leq 2 C \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{2} n \\
& =C n(\log (n)-\log (2))+c_{2} n \\
& =C n \log n-C n+c_{2} n \leq C n \log n
\end{aligned}
$$

if we chose $C \geq c_{2} . \checkmark$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{2} n \leq 2 C \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{2} n \\
& =C n(\log (n)-\log (2))+c_{2} n \\
& =C n \log n-C n+c_{2} n \leq C n \log n
\end{aligned}
$$

if we chose $C \geq c_{2} . \checkmark$
Verify the Base Case

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{2} n \leq 2 C \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{2} n \\
& =C n(\log (n)-\log (2))+c_{2} n \\
& =C n \log n-C n+c_{2} n \leq C n \log n
\end{aligned}
$$

if we chose $C \geq c_{2} . \checkmark$
Verify the Base Case
$T(1)$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{2} n \leq 2 C \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{2} n \\
& =C n(\log (n)-\log (2))+c_{2} n \\
& =C n \log n-C n+c_{2} n \leq C n \log n
\end{aligned}
$$

if we chose $C \geq c_{2} . \checkmark$
Verify the Base Case

$$
T(1) \leq C \cdot 1 \log (1)
$$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{2} n \leq 2 C \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{2} n \\
& =C n(\log (n)-\log (2))+c_{2} n \\
& =C n \log n-C n+c_{2} n \leq C n \log n
\end{aligned}
$$

if we chose $C \geq c_{2} . \checkmark$
Verify the Base Case

$$
T(1) \leq C \cdot 1 \log (1)=0
$$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{2} n \leq 2 C \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{2} n \\
& =C n(\log (n)-\log (2))+c_{2} n \\
& =C n \log n-C n+c_{2} n \leq C n \log n
\end{aligned}
$$

if we chose $C \geq c_{2} . \checkmark$
Verify the Base Case

$$
T(1) \leq C \cdot 1 \log (1)=0 \nsupseteq c_{1}
$$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{2} n \leq 2 C \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{2} n \\
& =C n(\log (n)-\log (2))+c_{2} n \\
& =C n \log n-C n+c_{2} n \leq C n \log n
\end{aligned}
$$

if we chose $C \geq c_{2} . \checkmark$
Verify the Base Case

$$
T(1) \leq C \cdot 1 \log (1)=0 \nsupseteq c_{1} \quad x
$$

The Substitution Method (2)

Step 2. Substitute into the Recurrence

- Assume that our guess $T(n) \leq C n \log n$ is correct for every $n^{\prime}<n$
- Corresponds to induction step of a proof by induction

$$
\begin{aligned}
T(n) & \leq 2 T(n / 2)+c_{2} n \leq 2 C \frac{n}{2} \log \left(\frac{n}{2}\right)+c_{2} n \\
& =C n(\log (n)-\log (2))+c_{2} n \\
& =C n \log n-C n+c_{2} n \leq C n \log n
\end{aligned}
$$

if we chose $C \geq c_{2} . \checkmark$
Verify the Base Case

$$
T(1) \leq C \cdot 1 \log (1)=0 \nsupseteq c_{1} \quad x
$$

The base case is a problem...

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)
Solution:

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)
Solution: Choose a different base case! $n=2$

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)
Solution: Choose a different base case! $n=2$
$T(2)$

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)
Solution: Choose a different base case! $n=2$

$$
T(2) \leq 2 T(1)+2 c_{2}
$$

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)
Solution: Choose a different base case! $n=2$

$$
T(2) \leq 2 T(1)+2 c_{2}=2 c_{1}+2 c_{2}
$$

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)
Solution: Choose a different base case! $n=2$

$$
T(2) \leq 2 T(1)+2 c_{2}=2 c_{1}+2 c_{2}=2\left(c_{2}+c_{1}\right)
$$

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)
Solution: Choose a different base case! $n=2$

$$
T(2) \leq 2 T(1)+2 c_{2}=2 c_{1}+2 c_{2}=2\left(c_{2}+c_{1}\right)
$$

$C 2 \log 2$

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)
Solution: Choose a different base case! $n=2$

$$
\begin{aligned}
T(2) & \leq 2 T(1)+2 c_{2}=2 c_{1}+2 c_{2}=2\left(c_{2}+c_{1}\right) \\
C 2 \log 2 & =2 C
\end{aligned}
$$

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)
Solution: Choose a different base case! $n=2$

$$
\begin{aligned}
T(2) & \leq 2 T(1)+2 c_{2}=2 c_{1}+2 c_{2}=2\left(c_{2}+c_{1}\right) \\
C 2 \log 2 & =2 C
\end{aligned}
$$

Hence, for every $C \geq c_{2}+c_{1}$, our guess holds for $n=2$:

$$
T(2) \leq C 2 \log 2 .
$$

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)
Solution: Choose a different base case! $n=2$

$$
\begin{aligned}
T(2) & \leq 2 T(1)+2 c_{2}=2 c_{1}+2 c_{2}=2\left(c_{2}+c_{1}\right) \\
C 2 \log 2 & =2 C
\end{aligned}
$$

Hence, for every $C \geq c_{2}+c_{1}$, our guess holds for $n=2$:

$$
T(2) \leq C 2 \log 2 .
$$

Result

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)
Solution: Choose a different base case! $n=2$

$$
\begin{aligned}
T(2) & \leq 2 T(1)+2 c_{2}=2 c_{1}+2 c_{2}=2\left(c_{2}+c_{1}\right) \\
C 2 \log 2 & =2 C
\end{aligned}
$$

Hence, for every $C \geq c_{2}+c_{1}$, our guess holds for $n=2$:

$$
T(2) \leq C 2 \log 2 .
$$

Result

- We proved $T(n) \leq C n \log n$, for every $n \geq 2$, when choosing $C \geq c_{1}+c_{2}$

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)
Solution: Choose a different base case! $n=2$

$$
\begin{aligned}
T(2) & \leq 2 T(1)+2 c_{2}=2 c_{1}+2 c_{2}=2\left(c_{2}+c_{1}\right) \\
C 2 \log 2 & =2 C
\end{aligned}
$$

Hence, for every $C \geq c_{2}+c_{1}$, our guess holds for $n=2$:

$$
T(2) \leq C 2 \log 2 .
$$

Result

- We proved $T(n) \leq C n \log n$, for every $n \geq 2$, when choosing $C \geq c_{1}+c_{2}$
- Observe: This implies $T(n) \in O(n \log n)$ (important)

The Substitution Method (3)

Recall: $T(1)=c_{1}$ and $T(n)=2 T(n / 2)+c_{2} n$
Our guess: $T(n) \leq C n \log n$ (induction step holds for $C \geq c_{2}$)
Solution: Choose a different base case! $n=2$

$$
\begin{aligned}
T(2) & \leq 2 T(1)+2 c_{2}=2 c_{1}+2 c_{2}=2\left(c_{2}+c_{1}\right) \\
C 2 \log 2 & =2 C
\end{aligned}
$$

Hence, for every $C \geq c_{2}+c_{1}$, our guess holds for $n=2$:

$$
T(2) \leq C 2 \log 2 .
$$

Result

- We proved $T(n) \leq C n \log n$, for every $n \geq 2$, when choosing $C \geq c_{1}+c_{2}$
- Observe: This implies $T(n) \in O(n \log n)$ (important)

Asymptotic notation allows us to chose arbitrary base case

A Strange Problem

A Strange Problem

Example: Give an upper bound on the recurrence

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n)
$$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1
$$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1
$$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1 \not \leq f(n) \boldsymbol{x}
$$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1 \not \leq f(n) \boldsymbol{x}
$$

- We need a different guess

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1 \not \leq f(n) \boldsymbol{x}
$$

- We need a different guess
- Let's try: $f_{1}(n):=C n+1$ and $f_{2}(n):=C n-1$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1 \not \leq f(n) \boldsymbol{x}
$$

- We need a different guess
- Let's try: $f_{1}(n):=C n+1$ and $f_{2}(n):=C n-1$

$$
f_{1}: T(n)
$$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1 \not \leq f(n) \boldsymbol{x}
$$

- We need a different guess
- Let's try: $f_{1}(n):=C n+1$ and $f_{2}(n):=C n-1$

$$
f_{1}: T(n) \leq C\lceil n / 2\rceil+1+C\lfloor n / 2\rfloor+1+1
$$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1 \not \leq f(n) x
$$

- We need a different guess
- Let's try: $f_{1}(n):=C n+1$ and $f_{2}(n):=C n-1$

$$
f_{1}: T(n) \leq C\lceil n / 2\rceil+1+C\lfloor n / 2\rfloor+1+1=C n+3
$$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1 \not \leq f(n) \boldsymbol{x}
$$

- We need a different guess
- Let's try: $f_{1}(n):=C n+1$ and $f_{2}(n):=C n-1$

$$
f_{1}: T(n) \leq C\lceil n / 2\rceil+1+C\lfloor n / 2\rfloor+1+1=C n+3 \not \leq f_{1}(n)
$$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1 \not \leq f(n) \boldsymbol{x}
$$

- We need a different guess
- Let's try: $f_{1}(n):=C n+1$ and $f_{2}(n):=C n-1$

$$
f_{1}: T(n) \leq C\lceil n / 2\rceil+1+C\lfloor n / 2\rfloor+1+1=C n+3 \not \leq f_{1}(n) \boldsymbol{x}
$$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1 \not \leq f(n) \boldsymbol{x}
$$

- We need a different guess
- Let's try: $f_{1}(n):=C n+1$ and $f_{2}(n):=C n-1$

$$
\begin{aligned}
& f_{1}: T(n) \leq C\lceil n / 2\rceil+1+C\lfloor n / 2\rfloor+1+1=C n+3 \not \leq f_{1}(n) \boldsymbol{x} \\
& f_{2}: T(n)
\end{aligned}
$$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1 \not \leq f(n) \boldsymbol{x}
$$

- We need a different guess
- Let's try: $f_{1}(n):=C n+1$ and $f_{2}(n):=C n-1$

$$
\begin{aligned}
& f_{1}: T(n) \leq C\lceil n / 2\rceil+1+C\lfloor n / 2\rfloor+1+1=C n+3 \not \leq f_{1}(n) \boldsymbol{x} \\
& f_{2}: T(n) \leq C\lceil n / 2\rceil-1+C\lfloor n / 2\rfloor-1+1
\end{aligned}
$$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1 \not \leq f(n) \boldsymbol{x}
$$

- We need a different guess
- Let's try: $f_{1}(n):=C n+1$ and $f_{2}(n):=C n-1$

$$
\begin{aligned}
& f_{1}: T(n) \leq C\lceil n / 2\rceil+1+C\lfloor n / 2\rfloor+1+1=C n+3 \not \leq f_{1}(n) \boldsymbol{x} \\
& f_{2}: T(n) \leq C\lceil n / 2\rceil-1+C\lfloor n / 2\rfloor-1+1=C n-1
\end{aligned}
$$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1 \not \leq f(n) \boldsymbol{x}
$$

- We need a different guess
- Let's try: $f_{1}(n):=C n+1$ and $f_{2}(n):=C n-1$

$$
\begin{aligned}
& f_{1}: T(n) \leq C\lceil n / 2\rceil+1+C\lfloor n / 2\rfloor+1+1=C n+3 \not \leq f_{1}(n) \boldsymbol{x} \\
& f_{2}: T(n) \leq C\lceil n / 2\rceil-1+C\lfloor n / 2\rfloor-1+1=C n-1=f_{2}(n)
\end{aligned}
$$

A Strange Problem

Example: Give an upper bound on the recurrence

$$
\begin{aligned}
& T(1)=1 \\
& T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+1
\end{aligned}
$$

Step 1: Guess correct solution $T(n) \leq f(n):=C n$
Step 2: Verify the solution

$$
T(n) \leq C\lceil n / 2\rceil+C\lfloor n / 2\rfloor+1=C n+1 \not \leq f(n) \boldsymbol{x}
$$

- We need a different guess
- Let's try: $f_{1}(n):=C n+1$ and $f_{2}(n):=C n-1$

$$
\begin{aligned}
& f_{1}: T(n) \leq C\lceil n / 2\rceil+1+C\lfloor n / 2\rfloor+1+1=C n+3 \not \leq f_{1}(n) \boldsymbol{x} \\
& f_{2}: T(n) \leq C\lceil n / 2\rceil-1+C\lfloor n / 2\rfloor-1+1=C n-1=f_{2}(n) \checkmark
\end{aligned}
$$

(holds for every positive C)

A Strange Problem (2)

Verify Base Case for f_{2}

A Strange Problem (2)

Verify Base Case for f_{2}

- We have: $T(1)=1$ and $f_{2}(1)=C-1 \geq T(1)$ for $C \geq 2$

A Strange Problem (2)

Verify Base Case for f_{2}

- We have: $T(1)=1$ and $f_{2}(1)=C-1 \geq T(1)$ for $C \geq 2$
- We thus set the constant C in f_{2} to $C=2$

A Strange Problem (2)

Verify Base Case for f_{2}

- We have: $T(1)=1$ and $f_{2}(1)=C-1 \geq T(1)$ for $C \geq 2$
- We thus set the constant C in f_{2} to $C=2$
- Then $f_{2}(n)=2 n-1 \geq T(n)$ for every $n \geq 1$

A Strange Problem (2)

Verify Base Case for f_{2}

- We have: $T(1)=1$ and $f_{2}(1)=C-1 \geq T(1)$ for $C \geq 2$
- We thus set the constant C in f_{2} to $C=2$
- Then $f_{2}(n)=2 n-1 \geq T(n)$ for every $n \geq 1$
- This implies that $T(n) \in O(n)$

A Strange Problem (2)

Verify Base Case for f_{2}

- We have: $T(1)=1$ and $f_{2}(1)=C-1 \geq T(1)$ for $C \geq 2$
- We thus set the constant C in f_{2} to $C=2$
- Then $f_{2}(n)=2 n-1 \geq T(n)$ for every $n \geq 1$
- This implies that $T(n) \in O(n)$

Comments

A Strange Problem (2)

Verify Base Case for f_{2}

- We have: $T(1)=1$ and $f_{2}(1)=C-1 \geq T(1)$ for $C \geq 2$
- We thus set the constant C in f_{2} to $C=2$
- Then $f_{2}(n)=2 n-1 \geq T(n)$ for every $n \geq 1$
- This implies that $T(n) \in O(n)$

Comments

- Guessing right can be difficult and requires experience

A Strange Problem (2)

Verify Base Case for f_{2}

- We have: $T(1)=1$ and $f_{2}(1)=C-1 \geq T(1)$ for $C \geq 2$
- We thus set the constant C in f_{2} to $C=2$
- Then $f_{2}(n)=2 n-1 \geq T(n)$ for every $n \geq 1$
- This implies that $T(n) \in O(n)$

Comments

- Guessing right can be difficult and requires experience
- However, recursion tree method can provide a good guess!

