Recurrences II
 COMS10017 - Algorithms 1

Dr Christian Konrad

Recursion Tree Method

Recursion Tree:

Recursion Tree Method

Recursion Tree:

- Each node represents cost of single subproblem

Recursion Tree Method

Recursion Tree:

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

Recursion Tree Method

Recursion Tree:

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

Example

Recursion Tree Method

Recursion Tree:

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

Example

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Recursion Tree Method

Recursion Tree:

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

Example

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

$T(64)$

Recursion Tree Method

Recursion Tree:

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

Example

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

$$
T(64)=2 T(16)+32
$$

Recursion Tree Method

Recursion Tree:

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

Example

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

$$
T(64)=2 T(16)+32=2(2 T(4)+8)+32
$$

Recursion Tree Method

Recursion Tree:

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

Example

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

$$
\begin{aligned}
T(64) & =2 T(16)+32=2(2 T(4)+8)+32 \\
& =2(2(2 T(1)+2)+8)+32
\end{aligned}
$$

Recursion Tree Method

Recursion Tree:

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

Example

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

$$
\begin{aligned}
T(64) & =2 T(16)+32=2(2 T(4)+8)+32 \\
& =2(2(2 T(1)+2)+8)+32 \\
& =2(2(2 \cdot 1+2)+8)+32
\end{aligned}
$$

Recursion Tree Method

Recursion Tree:

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

Example

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

$$
\begin{aligned}
T(64) & =2 T(16)+32=2(2 T(4)+8)+32 \\
& =2(2(2 T(1)+2)+8)+32 \\
& =2(2(2 \cdot 1+2)+8)+32=64
\end{aligned}
$$

Example

Example

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+\underbrace{n / 2}_{\text {cost of subproblem }}
$$

Example

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+\underbrace{n / 2}_{\text {cost of subproblem }}
$$

Recursion Tree for $n=64$:

Example

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+\underbrace{n / 2}_{\text {cost of subproblem }}
$$

Recursion Tree for $n=64$:

Example

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+\underbrace{n / 2}_{\text {cost of subproblem }}
$$

Recursion Tree for $n=64$:

Sum of values assigned to nodes equals T (64)

Obtaining a Good Guess for Solution

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Obtaining a Good Guess for Solution

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Draw Recursion Tree for general n (Observe: we ignore \lfloor.$\rfloor)$

Obtaining a Good Guess for Solution

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Draw Recursion Tree for general n (Observe: we ignore \lfloor.$\rfloor)$

Obtaining a Good Guess for Solution

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Draw Recursion Tree for general n (Observe: we ignore \lfloor.$\rfloor)$

Obtaining a Good Guess for Solution

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Draw Recursion Tree for general n (Observe: we ignore \lfloor.$\rfloor)$

Sum of Nodes in Level $i: \frac{n}{2^{i}}$ (except the last level)

Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

- We have $\frac{n}{4^{\ell-1}} \approx 1$

Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

- We have $\frac{n}{4^{\ell-1}} \approx 1$
- $\ell=\log _{4}(n)+1$

Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

- We have $\frac{n}{4^{\ell-1}} \approx 1$
- $\ell=\log _{4}(n)+1$

Cost on last Level: $=$ number of nodes on last level

Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

- We have $\frac{n}{4^{\ell-1}} \approx 1$
- $\ell=\log _{4}(n)+1$

Cost on last Level: $=$ number of nodes on last level

$$
\approx 2^{\log _{4}(n)}
$$

Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

- We have $\frac{n}{4^{\ell-1}} \approx 1$
- $\ell=\log _{4}(n)+1$

Cost on last Level: $=$ number of nodes on last level

$$
\approx 2^{\log _{4}(n)}=2^{\frac{\log n}{\log 4}}
$$

Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

- We have $\frac{n}{4^{\ell-1}} \approx 1$
- $\ell=\log _{4}(n)+1$

Cost on last Level: $=$ number of nodes on last level

$$
\approx 2^{\log _{4}(n)}=2^{\frac{\log n}{\log 4}}=2^{\log (n) / 2}
$$

Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

- We have $\frac{n}{4^{\ell-1}} \approx 1$
- $\ell=\log _{4}(n)+1$

Cost on last Level: $=$ number of nodes on last level

$$
\approx 2^{\log _{4}(n)}=2^{\frac{\log n}{\log 4}}=2^{\log (n) / 2}=n^{\frac{1}{2}}
$$

Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

- We have $\frac{n}{4^{\ell-1}} \approx 1$
- $\ell=\log _{4}(n)+1$

Cost on last Level: $=$ number of nodes on last level

$$
\approx 2^{\log _{4}(n)}=2^{\frac{\log n}{\log 4}}=2^{\log (n) / 2}=n^{\frac{1}{2}}=\sqrt{n} .
$$

Our Guess:

Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

- We have $\frac{n}{4^{\ell-1}} \approx 1$
- $\ell=\log _{4}(n)+1$

Cost on last Level: $=$ number of nodes on last level

$$
\approx 2^{\log _{4}(n)}=2^{\frac{\log n}{\log 4}}=2^{\log (n) / 2}=n^{\frac{1}{2}}=\sqrt{n} .
$$

Our Guess:

$$
\left(\sum_{i=1}^{\log _{4}(n)} \frac{n}{2^{i}}\right)+\sqrt{n}
$$

Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

- We have $\frac{n}{4^{\ell-1}} \approx 1$
- $\ell=\log _{4}(n)+1$

Cost on last Level: $=$ number of nodes on last level

$$
\approx 2^{\log _{4}(n)}=2^{\frac{\log n}{\log 4}}=2^{\log (n) / 2}=n^{\frac{1}{2}}=\sqrt{n} .
$$

Our Guess:

$\left(\sum_{i=1}^{\log _{4}(n)} \frac{n}{2^{i}}\right)+\sqrt{n}=(n \cdot \underbrace{\sum_{i=1}^{\log _{4}(n)} \frac{1}{2^{i}}}_{\text {geom. series }})+\sqrt{n}$

Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

- We have $\frac{n}{4^{\ell-1}} \approx 1$
- $\ell=\log _{4}(n)+1$

Cost on last Level: $=$ number of nodes on last level

$$
\approx 2^{\log _{4}(n)}=2^{\frac{\log n}{\log 4}}=2^{\log (n) / 2}=n^{\frac{1}{2}}=\sqrt{n} .
$$

Our Guess:

$\left(\sum_{i=1}^{\log _{4}(n)} \frac{n}{2^{i}}\right)+\sqrt{n}=(n \cdot \underbrace{\sum_{i=1}^{\log _{4}(n)} \frac{1}{2^{i}}}_{\text {geom. series }})+\sqrt{n}=n \cdot O(1)+\sqrt{n}$

Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

- We have $\frac{n}{4^{\ell-1}} \approx 1$
- $\ell=\log _{4}(n)+1$

Cost on last Level: $=$ number of nodes on last level

$$
\approx 2^{\log _{4}(n)}=2^{\frac{\log n}{\log 4}}=2^{\log (n) / 2}=n^{\frac{1}{2}}=\sqrt{n} .
$$

Our Guess:

$\left(\sum_{i=1}^{\log _{4}(n)} \frac{n}{2^{i}}\right)+\sqrt{n}=(n \cdot \underbrace{\sum_{i=1}^{\log _{4}(n)} \frac{1}{2^{i}}}_{\text {geom. series }})+\sqrt{n}=n \cdot O(1)+\sqrt{n}=O(n)$.

Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

- We have $\frac{n}{4^{\ell-1}} \approx 1$
- $\ell=\log _{4}(n)+1$

Cost on last Level: $=$ number of nodes on last level

$$
\approx 2^{\log _{4}(n)}=2^{\frac{\log n}{\log 4}}=2^{\log (n) / 2}=n^{\frac{1}{2}}=\sqrt{n} .
$$

Our Guess:

$\left(\sum_{i=1}^{\log _{4}(n)} \frac{n}{2^{i}}\right)+\sqrt{n}=(n \cdot \underbrace{\sum_{i=1}^{\log _{4}(n)} \frac{1}{2^{i}}}_{\text {geom. series }})+\sqrt{n}=n \cdot O(1)+\sqrt{n}=O(n)$.
Use substitution method to prove that guess is correct!

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$
Substitute into the Recurrence:

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$
Substitute into the Recurrence:

$$
T(n)
$$

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$
Substitute into the Recurrence:

$$
T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$
Substitute into the Recurrence:

$$
T(n)=2 T(\lfloor n / 4\rfloor)+n / 2 \leq 2 c\left\lfloor\frac{n}{4}\right\rfloor+\frac{n}{2}
$$

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$
Substitute into the Recurrence:

$$
T(n)=2 T(\lfloor n / 4\rfloor)+n / 2 \leq 2 c\left\lfloor\frac{n}{4}\right\rfloor+\frac{n}{2} \leq n \frac{c+1}{2} \leq c \cdot n,
$$

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$
Substitute into the Recurrence:

$$
T(n)=2 T(\lfloor n / 4\rfloor)+n / 2 \leq 2 c\left\lfloor\frac{n}{4}\right\rfloor+\frac{n}{2} \leq n \frac{c+1}{2} \leq c \cdot n,
$$

for every $c \geq 1$.

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$
Substitute into the Recurrence:

$$
T(n)=2 T(\lfloor n / 4\rfloor)+n / 2 \leq 2 c\left\lfloor\frac{n}{4}\right\rfloor+\frac{n}{2} \leq n \frac{c+1}{2} \leq c \cdot n,
$$

for every $c \geq 1$.
Verify the Base Case:

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$
Substitute into the Recurrence:

$$
T(n)=2 T(\lfloor n / 4\rfloor)+n / 2 \leq 2 c\left\lfloor\frac{n}{4}\right\rfloor+\frac{n}{2} \leq n \frac{c+1}{2} \leq c \cdot n,
$$

for every $c \geq 1$.
Verify the Base Case: $T(1)$

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$
Substitute into the Recurrence:

$$
T(n)=2 T(\lfloor n / 4\rfloor)+n / 2 \leq 2 c\left\lfloor\frac{n}{4}\right\rfloor+\frac{n}{2} \leq n \frac{c+1}{2} \leq c \cdot n,
$$

for every $c \geq 1$.
Verify the Base Case: $T(1)=1 \leq c \cdot 1$

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$
Substitute into the Recurrence:

$$
T(n)=2 T(\lfloor n / 4\rfloor)+n / 2 \leq 2 c\left\lfloor\frac{n}{4}\right\rfloor+\frac{n}{2} \leq n \frac{c+1}{2} \leq c \cdot n,
$$

for every $c \geq 1$.
Verify the Base Case: $T(1)=1 \leq c \cdot 1=c$ for every $c \geq 1$.

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$
Substitute into the Recurrence:

$$
T(n)=2 T(\lfloor n / 4\rfloor)+n / 2 \leq 2 c\left\lfloor\frac{n}{4}\right\rfloor+\frac{n}{2} \leq n \frac{c+1}{2} \leq c \cdot n,
$$

for every $c \geq 1$.
Verify the Base Case: $T(1)=1 \leq c \cdot 1=c$ for every $c \geq 1$.
Summary:

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$
Substitute into the Recurrence:

$$
T(n)=2 T(\lfloor n / 4\rfloor)+n / 2 \leq 2 c\left\lfloor\frac{n}{4}\right\rfloor+\frac{n}{2} \leq n \frac{c+1}{2} \leq c \cdot n,
$$

for every $c \geq 1$.
Verify the Base Case: $T(1)=1 \leq c \cdot 1=c$ for every $c \geq 1$.
Summary:

- We proved $T(n) \leq n$, for every $n \geq 1$

Verification via Substitution Method

$$
T(1)=1, \quad T(n)=2 T(\lfloor n / 4\rfloor)+n / 2
$$

Our Guess: $T(n) \leq c \cdot n$
Substitute into the Recurrence:

$$
T(n)=2 T(\lfloor n / 4\rfloor)+n / 2 \leq 2 c\left\lfloor\frac{n}{4}\right\rfloor+\frac{n}{2} \leq n \frac{c+1}{2} \leq c \cdot n,
$$

for every $c \geq 1$.
Verify the Base Case: $T(1)=1 \leq c \cdot 1=c$ for every $c \geq 1$.
Summary:

- We proved $T(n) \leq n$, for every $n \geq 1$
- Hence $T(n) \in O(n)$

Summary

Recursion Tree Method

Summary

Recursion Tree Method

- Assign contribution of subproblem to each node

Summary

Recursion Tree Method

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure

Summary

Recursion Tree Method

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess

Summary

Recursion Tree Method

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess
- Verify guess with subsitution method

Summary

Recursion Tree Method

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess
- Verify guess with subsitution method

Substitution Method

Summary

Recursion Tree Method

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess
- Verify guess with subsitution method

Substitution Method

- Guess correct solution

Summary

Recursion Tree Method

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess
- Verify guess with subsitution method

Substitution Method

- Guess correct solution
- Verify guess using mathematical induction

Summary

Recursion Tree Method

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess
- Verify guess with subsitution method

Substitution Method

- Guess correct solution
- Verify guess using mathematical induction
- Guessing can be difficult and requires experience

