
Recurrences II
COMS10017 - Algorithms 1

Dr Christian Konrad

Dr Christian Konrad Recurrences II 1 / 7



Recursion Tree Method

Recursion Tree:

Each node represents cost of single subproblem

Recursive invocations become children of a node

Example
T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

T (64) = 2T (16) + 32 = 2(2T (4) + 8) + 32

= 2(2(2T (1) + 2) + 8) + 32

= 2(2(2 · 1 + 2) + 8) + 32 = 64

Dr Christian Konrad Recurrences II 2 / 7



Recursion Tree Method

Recursion Tree:

Each node represents cost of single subproblem

Recursive invocations become children of a node

Example
T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

T (64) = 2T (16) + 32 = 2(2T (4) + 8) + 32

= 2(2(2T (1) + 2) + 8) + 32

= 2(2(2 · 1 + 2) + 8) + 32 = 64

Dr Christian Konrad Recurrences II 2 / 7



Recursion Tree Method

Recursion Tree:

Each node represents cost of single subproblem

Recursive invocations become children of a node

Example
T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

T (64) = 2T (16) + 32 = 2(2T (4) + 8) + 32

= 2(2(2T (1) + 2) + 8) + 32

= 2(2(2 · 1 + 2) + 8) + 32 = 64

Dr Christian Konrad Recurrences II 2 / 7



Recursion Tree Method

Recursion Tree:

Each node represents cost of single subproblem

Recursive invocations become children of a node

Example

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

T (64) = 2T (16) + 32 = 2(2T (4) + 8) + 32

= 2(2(2T (1) + 2) + 8) + 32

= 2(2(2 · 1 + 2) + 8) + 32 = 64

Dr Christian Konrad Recurrences II 2 / 7



Recursion Tree Method

Recursion Tree:

Each node represents cost of single subproblem

Recursive invocations become children of a node

Example
T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

T (64) = 2T (16) + 32 = 2(2T (4) + 8) + 32

= 2(2(2T (1) + 2) + 8) + 32

= 2(2(2 · 1 + 2) + 8) + 32 = 64

Dr Christian Konrad Recurrences II 2 / 7



Recursion Tree Method

Recursion Tree:

Each node represents cost of single subproblem

Recursive invocations become children of a node

Example
T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

T (64)

= 2T (16) + 32 = 2(2T (4) + 8) + 32

= 2(2(2T (1) + 2) + 8) + 32

= 2(2(2 · 1 + 2) + 8) + 32 = 64

Dr Christian Konrad Recurrences II 2 / 7



Recursion Tree Method

Recursion Tree:

Each node represents cost of single subproblem

Recursive invocations become children of a node

Example
T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

T (64) = 2T (16) + 32

= 2(2T (4) + 8) + 32

= 2(2(2T (1) + 2) + 8) + 32

= 2(2(2 · 1 + 2) + 8) + 32 = 64

Dr Christian Konrad Recurrences II 2 / 7



Recursion Tree Method

Recursion Tree:

Each node represents cost of single subproblem

Recursive invocations become children of a node

Example
T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

T (64) = 2T (16) + 32 = 2(2T (4) + 8) + 32

= 2(2(2T (1) + 2) + 8) + 32

= 2(2(2 · 1 + 2) + 8) + 32 = 64

Dr Christian Konrad Recurrences II 2 / 7



Recursion Tree Method

Recursion Tree:

Each node represents cost of single subproblem

Recursive invocations become children of a node

Example
T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

T (64) = 2T (16) + 32 = 2(2T (4) + 8) + 32

= 2(2(2T (1) + 2) + 8) + 32

= 2(2(2 · 1 + 2) + 8) + 32 = 64

Dr Christian Konrad Recurrences II 2 / 7



Recursion Tree Method

Recursion Tree:

Each node represents cost of single subproblem

Recursive invocations become children of a node

Example
T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

T (64) = 2T (16) + 32 = 2(2T (4) + 8) + 32

= 2(2(2T (1) + 2) + 8) + 32

= 2(2(2 · 1 + 2) + 8) + 32

= 64

Dr Christian Konrad Recurrences II 2 / 7



Recursion Tree Method

Recursion Tree:

Each node represents cost of single subproblem

Recursive invocations become children of a node

Example
T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

T (64) = 2T (16) + 32 = 2(2T (4) + 8) + 32

= 2(2(2T (1) + 2) + 8) + 32

= 2(2(2 · 1 + 2) + 8) + 32 = 64

Dr Christian Konrad Recurrences II 2 / 7



Example

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2︸︷︷︸
cost of subproblem

Recursion Tree for n = 64:

Sum of values assigned to nodes equals T (64)

Dr Christian Konrad Recurrences II 3 / 7



Example

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2︸︷︷︸
cost of subproblem

Recursion Tree for n = 64:

Sum of values assigned to nodes equals T (64)

Dr Christian Konrad Recurrences II 3 / 7



Example

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2︸︷︷︸
cost of subproblem

Recursion Tree for n = 64:

Sum of values assigned to nodes equals T (64)

Dr Christian Konrad Recurrences II 3 / 7



Example

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2︸︷︷︸
cost of subproblem

Recursion Tree for n = 64:

Sum of values assigned to nodes equals T (64)

Dr Christian Konrad Recurrences II 3 / 7



Example

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2︸︷︷︸
cost of subproblem

Recursion Tree for n = 64:

Sum of values assigned to nodes equals T (64)

Dr Christian Konrad Recurrences II 3 / 7



Obtaining a Good Guess for Solution

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Draw Recursion Tree for general n (Observe: we ignore ⌊.⌋)

Sum of Nodes in Level i :
n

2i
(except the last level)

Dr Christian Konrad Recurrences II 4 / 7



Obtaining a Good Guess for Solution

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Draw Recursion Tree for general n (Observe: we ignore ⌊.⌋)

Sum of Nodes in Level i :
n

2i
(except the last level)

Dr Christian Konrad Recurrences II 4 / 7



Obtaining a Good Guess for Solution

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Draw Recursion Tree for general n (Observe: we ignore ⌊.⌋)

Sum of Nodes in Level i :
n

2i
(except the last level)

Dr Christian Konrad Recurrences II 4 / 7



Obtaining a Good Guess for Solution

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Draw Recursion Tree for general n (Observe: we ignore ⌊.⌋)

Sum of Nodes in Level i :
n

2i
(except the last level)

Dr Christian Konrad Recurrences II 4 / 7



Obtaining a Good Guess for Solution

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Draw Recursion Tree for general n (Observe: we ignore ⌊.⌋)

Sum of Nodes in Level i :
n

2i
(except the last level)

Dr Christian Konrad Recurrences II 4 / 7



Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

We have
n

4ℓ−1
≈ 1

ℓ = log4(n) + 1

Cost on last Level: = number of nodes on last level

≈ 2log4(n) = 2
log n
log 4 = 2log(n)/2 = n

1
2 =

√
n .

Our Guess:

log4(n)∑
i=1

n

2i

+
√
n =

n ·
log4(n)∑
i=1

1

2i︸ ︷︷ ︸
geom. series

+
√
n = n·O(1)+

√
n = O(n) .

Use substitution method to prove that guess is correct!

Dr Christian Konrad Recurrences II 5 / 7



Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

We have
n

4ℓ−1
≈ 1

ℓ = log4(n) + 1

Cost on last Level: = number of nodes on last level

≈ 2log4(n) = 2
log n
log 4 = 2log(n)/2 = n

1
2 =

√
n .

Our Guess:

log4(n)∑
i=1

n

2i

+
√
n =

n ·
log4(n)∑
i=1

1

2i︸ ︷︷ ︸
geom. series

+
√
n = n·O(1)+

√
n = O(n) .

Use substitution method to prove that guess is correct!

Dr Christian Konrad Recurrences II 5 / 7



Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

We have
n

4ℓ−1
≈ 1

ℓ = log4(n) + 1

Cost on last Level: = number of nodes on last level

≈ 2log4(n) = 2
log n
log 4 = 2log(n)/2 = n

1
2 =

√
n .

Our Guess:

log4(n)∑
i=1

n

2i

+
√
n =

n ·
log4(n)∑
i=1

1

2i︸ ︷︷ ︸
geom. series

+
√
n = n·O(1)+

√
n = O(n) .

Use substitution method to prove that guess is correct!

Dr Christian Konrad Recurrences II 5 / 7



Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

We have
n

4ℓ−1
≈ 1

ℓ = log4(n) + 1

Cost on last Level: = number of nodes on last level

≈ 2log4(n) = 2
log n
log 4 = 2log(n)/2 = n

1
2 =

√
n .

Our Guess:

log4(n)∑
i=1

n

2i

+
√
n =

n ·
log4(n)∑
i=1

1

2i︸ ︷︷ ︸
geom. series

+
√
n = n·O(1)+

√
n = O(n) .

Use substitution method to prove that guess is correct!

Dr Christian Konrad Recurrences II 5 / 7



Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

We have
n

4ℓ−1
≈ 1

ℓ = log4(n) + 1

Cost on last Level: = number of nodes on last level

≈ 2log4(n)

= 2
log n
log 4 = 2log(n)/2 = n

1
2 =

√
n .

Our Guess:

log4(n)∑
i=1

n

2i

+
√
n =

n ·
log4(n)∑
i=1

1

2i︸ ︷︷ ︸
geom. series

+
√
n = n·O(1)+

√
n = O(n) .

Use substitution method to prove that guess is correct!

Dr Christian Konrad Recurrences II 5 / 7



Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

We have
n

4ℓ−1
≈ 1

ℓ = log4(n) + 1

Cost on last Level: = number of nodes on last level

≈ 2log4(n) = 2
log n
log 4

= 2log(n)/2 = n
1
2 =

√
n .

Our Guess:

log4(n)∑
i=1

n

2i

+
√
n =

n ·
log4(n)∑
i=1

1

2i︸ ︷︷ ︸
geom. series

+
√
n = n·O(1)+

√
n = O(n) .

Use substitution method to prove that guess is correct!

Dr Christian Konrad Recurrences II 5 / 7



Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

We have
n

4ℓ−1
≈ 1

ℓ = log4(n) + 1

Cost on last Level: = number of nodes on last level

≈ 2log4(n) = 2
log n
log 4 = 2log(n)/2

= n
1
2 =

√
n .

Our Guess:

log4(n)∑
i=1

n

2i

+
√
n =

n ·
log4(n)∑
i=1

1

2i︸ ︷︷ ︸
geom. series

+
√
n = n·O(1)+

√
n = O(n) .

Use substitution method to prove that guess is correct!

Dr Christian Konrad Recurrences II 5 / 7



Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

We have
n

4ℓ−1
≈ 1

ℓ = log4(n) + 1

Cost on last Level: = number of nodes on last level

≈ 2log4(n) = 2
log n
log 4 = 2log(n)/2 = n

1
2

=
√
n .

Our Guess:

log4(n)∑
i=1

n

2i

+
√
n =

n ·
log4(n)∑
i=1

1

2i︸ ︷︷ ︸
geom. series

+
√
n = n·O(1)+

√
n = O(n) .

Use substitution method to prove that guess is correct!

Dr Christian Konrad Recurrences II 5 / 7



Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

We have
n

4ℓ−1
≈ 1

ℓ = log4(n) + 1

Cost on last Level: = number of nodes on last level

≈ 2log4(n) = 2
log n
log 4 = 2log(n)/2 = n

1
2 =

√
n .

Our Guess:

log4(n)∑
i=1

n

2i

+
√
n =

n ·
log4(n)∑
i=1

1

2i︸ ︷︷ ︸
geom. series

+
√
n = n·O(1)+

√
n = O(n) .

Use substitution method to prove that guess is correct!

Dr Christian Konrad Recurrences II 5 / 7



Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

We have
n

4ℓ−1
≈ 1

ℓ = log4(n) + 1

Cost on last Level: = number of nodes on last level

≈ 2log4(n) = 2
log n
log 4 = 2log(n)/2 = n

1
2 =

√
n .

Our Guess:

log4(n)∑
i=1

n

2i

+
√
n

=

n ·
log4(n)∑
i=1

1

2i︸ ︷︷ ︸
geom. series

+
√
n = n·O(1)+

√
n = O(n) .

Use substitution method to prove that guess is correct!

Dr Christian Konrad Recurrences II 5 / 7



Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

We have
n

4ℓ−1
≈ 1

ℓ = log4(n) + 1

Cost on last Level: = number of nodes on last level

≈ 2log4(n) = 2
log n
log 4 = 2log(n)/2 = n

1
2 =

√
n .

Our Guess:

log4(n)∑
i=1

n

2i

+
√
n =

n ·
log4(n)∑
i=1

1

2i︸ ︷︷ ︸
geom. series

+
√
n

= n·O(1)+
√
n = O(n) .

Use substitution method to prove that guess is correct!

Dr Christian Konrad Recurrences II 5 / 7



Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

We have
n

4ℓ−1
≈ 1

ℓ = log4(n) + 1

Cost on last Level: = number of nodes on last level

≈ 2log4(n) = 2
log n
log 4 = 2log(n)/2 = n

1
2 =

√
n .

Our Guess:

log4(n)∑
i=1

n

2i

+
√
n =

n ·
log4(n)∑
i=1

1

2i︸ ︷︷ ︸
geom. series

+
√
n = n·O(1)+

√
n

= O(n) .

Use substitution method to prove that guess is correct!

Dr Christian Konrad Recurrences II 5 / 7



Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

We have
n

4ℓ−1
≈ 1

ℓ = log4(n) + 1

Cost on last Level: = number of nodes on last level

≈ 2log4(n) = 2
log n
log 4 = 2log(n)/2 = n

1
2 =

√
n .

Our Guess:

log4(n)∑
i=1

n

2i

+
√
n =

n ·
log4(n)∑
i=1

1

2i︸ ︷︷ ︸
geom. series

+
√
n = n·O(1)+

√
n = O(n) .

Use substitution method to prove that guess is correct!

Dr Christian Konrad Recurrences II 5 / 7



Obtaining a Good Guess for Solution (2)

Number of Levels: ℓ

We have
n

4ℓ−1
≈ 1

ℓ = log4(n) + 1

Cost on last Level: = number of nodes on last level

≈ 2log4(n) = 2
log n
log 4 = 2log(n)/2 = n

1
2 =

√
n .

Our Guess:

log4(n)∑
i=1

n

2i

+
√
n =

n ·
log4(n)∑
i=1

1

2i︸ ︷︷ ︸
geom. series

+
√
n = n·O(1)+

√
n = O(n) .

Use substitution method to prove that guess is correct!

Dr Christian Konrad Recurrences II 5 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n) = 2T (⌊n/4⌋) + n/2 ≤ 2c⌊n
4
⌋+ n

2
≤ n

c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case: T (1) = 1 ≤ c · 1 = c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n) = 2T (⌊n/4⌋) + n/2 ≤ 2c⌊n
4
⌋+ n

2
≤ n

c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case: T (1) = 1 ≤ c · 1 = c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n) = 2T (⌊n/4⌋) + n/2 ≤ 2c⌊n
4
⌋+ n

2
≤ n

c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case: T (1) = 1 ≤ c · 1 = c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n)

= 2T (⌊n/4⌋) + n/2 ≤ 2c⌊n
4
⌋+ n

2
≤ n

c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case: T (1) = 1 ≤ c · 1 = c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n) = 2T (⌊n/4⌋) + n/2

≤ 2c⌊n
4
⌋+ n

2
≤ n

c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case: T (1) = 1 ≤ c · 1 = c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n) = 2T (⌊n/4⌋) + n/2 ≤ 2c⌊n
4
⌋+ n

2

≤ n
c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case: T (1) = 1 ≤ c · 1 = c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n) = 2T (⌊n/4⌋) + n/2 ≤ 2c⌊n
4
⌋+ n

2
≤ n

c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case: T (1) = 1 ≤ c · 1 = c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n) = 2T (⌊n/4⌋) + n/2 ≤ 2c⌊n
4
⌋+ n

2
≤ n

c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case: T (1) = 1 ≤ c · 1 = c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n) = 2T (⌊n/4⌋) + n/2 ≤ 2c⌊n
4
⌋+ n

2
≤ n

c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case:

T (1) = 1 ≤ c · 1 = c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n) = 2T (⌊n/4⌋) + n/2 ≤ 2c⌊n
4
⌋+ n

2
≤ n

c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case: T (1)

= 1 ≤ c · 1 = c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n) = 2T (⌊n/4⌋) + n/2 ≤ 2c⌊n
4
⌋+ n

2
≤ n

c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case: T (1) = 1 ≤ c · 1

= c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n) = 2T (⌊n/4⌋) + n/2 ≤ 2c⌊n
4
⌋+ n

2
≤ n

c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case: T (1) = 1 ≤ c · 1 = c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n) = 2T (⌊n/4⌋) + n/2 ≤ 2c⌊n
4
⌋+ n

2
≤ n

c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case: T (1) = 1 ≤ c · 1 = c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n) = 2T (⌊n/4⌋) + n/2 ≤ 2c⌊n
4
⌋+ n

2
≤ n

c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case: T (1) = 1 ≤ c · 1 = c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Verification via Substitution Method

T (1) = 1, T (n) = 2T (⌊n/4⌋) + n/2

Our Guess: T (n) ≤ c · n

Substitute into the Recurrence:

T (n) = 2T (⌊n/4⌋) + n/2 ≤ 2c⌊n
4
⌋+ n

2
≤ n

c + 1

2
≤ c · n ,

for every c ≥ 1.

Verify the Base Case: T (1) = 1 ≤ c · 1 = c for every c ≥ 1.

Summary:

We proved T (n) ≤ n, for every n ≥ 1

Hence T (n) ∈ O(n)

Dr Christian Konrad Recurrences II 6 / 7



Summary

Recursion Tree Method

Assign contribution of subproblem to each node

Sum up contributions using tree structure

Allows us to be sloppy, since we only aim for a good guess

Verify guess with subsitution method

Substitution Method

Guess correct solution

Verify guess using mathematical induction

Guessing can be difficult and requires experience

Dr Christian Konrad Recurrences II 7 / 7



Summary

Recursion Tree Method

Assign contribution of subproblem to each node

Sum up contributions using tree structure

Allows us to be sloppy, since we only aim for a good guess

Verify guess with subsitution method

Substitution Method

Guess correct solution

Verify guess using mathematical induction

Guessing can be difficult and requires experience

Dr Christian Konrad Recurrences II 7 / 7



Summary

Recursion Tree Method

Assign contribution of subproblem to each node

Sum up contributions using tree structure

Allows us to be sloppy, since we only aim for a good guess

Verify guess with subsitution method

Substitution Method

Guess correct solution

Verify guess using mathematical induction

Guessing can be difficult and requires experience

Dr Christian Konrad Recurrences II 7 / 7



Summary

Recursion Tree Method

Assign contribution of subproblem to each node

Sum up contributions using tree structure

Allows us to be sloppy, since we only aim for a good guess

Verify guess with subsitution method

Substitution Method

Guess correct solution

Verify guess using mathematical induction

Guessing can be difficult and requires experience

Dr Christian Konrad Recurrences II 7 / 7



Summary

Recursion Tree Method

Assign contribution of subproblem to each node

Sum up contributions using tree structure

Allows us to be sloppy, since we only aim for a good guess

Verify guess with subsitution method

Substitution Method

Guess correct solution

Verify guess using mathematical induction

Guessing can be difficult and requires experience

Dr Christian Konrad Recurrences II 7 / 7



Summary

Recursion Tree Method

Assign contribution of subproblem to each node

Sum up contributions using tree structure

Allows us to be sloppy, since we only aim for a good guess

Verify guess with subsitution method

Substitution Method

Guess correct solution

Verify guess using mathematical induction

Guessing can be difficult and requires experience

Dr Christian Konrad Recurrences II 7 / 7



Summary

Recursion Tree Method

Assign contribution of subproblem to each node

Sum up contributions using tree structure

Allows us to be sloppy, since we only aim for a good guess

Verify guess with subsitution method

Substitution Method

Guess correct solution

Verify guess using mathematical induction

Guessing can be difficult and requires experience

Dr Christian Konrad Recurrences II 7 / 7



Summary

Recursion Tree Method

Assign contribution of subproblem to each node

Sum up contributions using tree structure

Allows us to be sloppy, since we only aim for a good guess

Verify guess with subsitution method

Substitution Method

Guess correct solution

Verify guess using mathematical induction

Guessing can be difficult and requires experience

Dr Christian Konrad Recurrences II 7 / 7



Summary

Recursion Tree Method

Assign contribution of subproblem to each node

Sum up contributions using tree structure

Allows us to be sloppy, since we only aim for a good guess

Verify guess with subsitution method

Substitution Method

Guess correct solution

Verify guess using mathematical induction

Guessing can be difficult and requires experience

Dr Christian Konrad Recurrences II 7 / 7


