Recurrences II COMS10017 - Algorithms 1

Dr Christian Konrad

Recursion Tree Method

Recursion Tree:

• Each node represents cost of single subproblem

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + n/2$

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

Example

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

T(64)

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

Example

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

T(64) = 2T(16) + 32

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

$$T(64) = 2T(16) + 32 = 2(2T(4) + 8) + 32$$

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

$$T(64) = 2T(16) + 32 = 2(2T(4) + 8) + 32$$

= 2(2(2T(1) + 2) + 8) + 32

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

$$T(64) = 2T(16) + 32 = 2(2T(4) + 8) + 32$$

= 2(2(2T(1) + 2) + 8) + 32
= 2(2(2 \cdot 1 + 2) + 8) + 32

- Each node represents cost of single subproblem
- Recursive invocations become children of a node

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

$$T(64) = 2T(16) + 32 = 2(2T(4) + 8) + 32$$

= 2(2(2T(1) + 2) + 8) + 32
= 2(2(2 \cdot 1 + 2) + 8) + 32 = 64

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + \underbrace{n/2}_{\text{cost of subproblem}}$

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + \underbrace{n/2}_{\text{cost of subproblem}}$

Recursion Tree for n = 64**:**

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + \underbrace{n/2}_{\text{cost of subproblem}}$

Recursion Tree for n = 64:

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + \underbrace{n/2}_{\text{cost of subproblem}}$

Recursion Tree for n = 64:

Sum of values assigned to nodes equals T(64)

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + n/2$

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + n/2$

Draw Recursion Tree for general *n* (Observe: we ignore $\lfloor . \rfloor$)

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + n/2$

Draw Recursion Tree for general *n* (Observe: we ignore |.|)

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + n/2$

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + n/2$

Sum of Nodes in Level *i*: $\frac{n}{2^i}$ (except the last level)

Number of Levels: ℓ

Number of Levels: ℓ • We have $\frac{n}{4^{\ell-1}} \approx 1$

Number of Levels: ℓ

• We have
$$\frac{n}{4^{\ell-1}} \approx 1$$

• $\ell = \log_4(n) + 1$

Number of Levels: ℓ

Number of Levels: ℓ

Cost on last Level: = number of nodes on last level

 $\approx 2^{\log_4(n)}$

Number of Levels: ℓ

$$\approx 2^{\log_4(n)} = 2^{\frac{\log n}{\log 4}}$$

Number of Levels: ℓ

$$\approx 2^{\log_4(n)} = 2^{\frac{\log n}{\log 4}} = 2^{\log(n)/2}$$

Number of Levels: ℓ

$$\approx 2^{\log_4(n)} = 2^{\frac{\log n}{\log 4}} = 2^{\log(n)/2} = n^{\frac{1}{2}}$$

Number of Levels: ℓ

Cost on last Level: = number of nodes on last level

$$pprox 2^{\log_4(n)} = 2^{\frac{\log n}{\log 4}} = 2^{\log(n)/2} = n^{\frac{1}{2}} = \sqrt{n} \; .$$

Number of Levels: ℓ

Cost on last Level: = number of nodes on last level

$$pprox 2^{\log_4(n)} = 2^{\frac{\log n}{\log 4}} = 2^{\log(n)/2} = n^{\frac{1}{2}} = \sqrt{n} \; .$$

$$\left(\sum_{i=1}^{\log_4(n)} \frac{n}{2^i}\right) + \sqrt{n}$$

Number of Levels: ℓ

Cost on last Level: = number of nodes on last level

$$pprox 2^{\log_4(n)} = 2^{\frac{\log n}{\log 4}} = 2^{\log(n)/2} = n^{\frac{1}{2}} = \sqrt{n} \; .$$

$$\left(\sum_{i=1}^{\log_4(n)} \frac{n}{2^i}\right) + \sqrt{n} = \left(n \cdot \sum_{\substack{i=1\\geom. \text{ series}}}^{\log_4(n)} \frac{1}{2^i}\right) + \sqrt{n}$$

Number of Levels: ℓ

Cost on last Level: = number of nodes on last level

$$pprox 2^{\log_4(n)} = 2^{\frac{\log n}{\log 4}} = 2^{\log(n)/2} = n^{\frac{1}{2}} = \sqrt{n} \; .$$

$$\left(\sum_{i=1}^{\log_4(n)} \frac{n}{2^i}\right) + \sqrt{n} = \left(n \cdot \sum_{\substack{i=1\\geom. \text{ series}}}^{\log_4(n)} \frac{1}{2^i}\right) + \sqrt{n} = n \cdot O(1) + \sqrt{n}$$

Number of Levels: ℓ

Cost on last Level: = number of nodes on last level

$$pprox 2^{\log_4(n)} = 2^{\frac{\log n}{\log 4}} = 2^{\log(n)/2} = n^{\frac{1}{2}} = \sqrt{n} \; .$$

$$\left(\sum_{i=1}^{\log_4(n)} \frac{n}{2^i}\right) + \sqrt{n} = \left(n \cdot \sum_{\substack{i=1\\geom. \text{ series}}}^{\log_4(n)} \frac{1}{2^i}\right) + \sqrt{n} = n \cdot O(1) + \sqrt{n} = O(n).$$

Number of Levels: ℓ

Cost on last Level: = number of nodes on last level

$$pprox 2^{\log_4(n)} = 2^{\frac{\log n}{\log 4}} = 2^{\log(n)/2} = n^{\frac{1}{2}} = \sqrt{n} \; .$$

Our Guess:

$$\left(\sum_{i=1}^{\log_4(n)} \frac{n}{2^i}\right) + \sqrt{n} = \left(n \cdot \sum_{\substack{i=1\\geom. \text{ series}}}^{\log_4(n)} \frac{1}{2^i}\right) + \sqrt{n} = n \cdot O(1) + \sqrt{n} = O(n).$$

Use substitution method to prove that guess is correct!

Verification via Substitution Method

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

Our Guess: $T(n) \le c \cdot n$

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + n/2$

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + n/2$

Substitute into the Recurrence:

T(n)

$$T(1) = 1$$
, $T(n) = 2T(\lfloor n/4 \rfloor) + n/2$

$$T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

$$T(n) = 2T(\lfloor n/4 \rfloor) + n/2 \le 2c \lfloor \frac{n}{4} \rfloor + \frac{n}{2}$$

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

$$T(n) = 2T(\lfloor n/4 \rfloor) + n/2 \le 2c \lfloor \frac{n}{4} \rfloor + \frac{n}{2} \le n \frac{c+1}{2} \le c \cdot n ,$$

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

Substitute into the Recurrence:

$$T(n) = 2T(\lfloor n/4 \rfloor) + n/2 \le 2c \lfloor \frac{n}{4} \rfloor + \frac{n}{2} \le n \frac{c+1}{2} \le c \cdot n ,$$

for every $c \geq 1$.

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

Substitute into the Recurrence:

$$T(n) = 2T(\lfloor n/4 \rfloor) + n/2 \le 2c \lfloor \frac{n}{4} \rfloor + \frac{n}{2} \le n \frac{c+1}{2} \le c \cdot n ,$$

for every $c \geq 1$.

Verify the Base Case:

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

Substitute into the Recurrence:

$$T(n) = 2T(\lfloor n/4 \rfloor) + n/2 \le 2c \lfloor \frac{n}{4} \rfloor + \frac{n}{2} \le n \frac{c+1}{2} \le c \cdot n ,$$

for every $c \geq 1$.

Verify the Base Case: T(1)

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

Substitute into the Recurrence:

$$T(n) = 2T(\lfloor n/4 \rfloor) + n/2 \le 2c \lfloor \frac{n}{4} \rfloor + \frac{n}{2} \le n \frac{c+1}{2} \le c \cdot n ,$$

for every $c \geq 1$.

Verify the Base Case: $T(1) = 1 \le c \cdot 1$

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

Substitute into the Recurrence:

$$T(n) = 2T(\lfloor n/4 \rfloor) + n/2 \le 2c \lfloor \frac{n}{4} \rfloor + \frac{n}{2} \le n \frac{c+1}{2} \le c \cdot n$$

for every $c \geq 1$.

Verify the Base Case: $T(1) = 1 \le c \cdot 1 = c$ for every $c \ge 1$.

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

Substitute into the Recurrence:

$$T(n) = 2T(\lfloor n/4 \rfloor) + n/2 \le 2c \lfloor \frac{n}{4} \rfloor + \frac{n}{2} \le n \frac{c+1}{2} \le c \cdot n$$

for every $c \geq 1$.

Verify the Base Case: $T(1) = 1 \le c \cdot 1 = c$ for every $c \ge 1$. Summary:

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

Substitute into the Recurrence:

$$T(n) = 2T(\lfloor n/4 \rfloor) + n/2 \le 2c \lfloor \frac{n}{4} \rfloor + \frac{n}{2} \le n \frac{c+1}{2} \le c \cdot n$$

for every $c \geq 1$.

Verify the Base Case: $T(1) = 1 \le c \cdot 1 = c$ for every $c \ge 1$.

Summary:

• We proved $T(n) \leq n$, for every $n \geq 1$

$$T(1) = 1, \quad T(n) = 2T(\lfloor n/4 \rfloor) + n/2$$

Substitute into the Recurrence:

$$T(n) = 2T(\lfloor n/4 \rfloor) + n/2 \le 2c \lfloor \frac{n}{4} \rfloor + \frac{n}{2} \le n \frac{c+1}{2} \le c \cdot n$$

for every $c \geq 1$.

Verify the Base Case: $T(1) = 1 \le c \cdot 1 = c$ for every $c \ge 1$.

Summary:

- We proved $T(n) \leq n$, for every $n \geq 1$
- Hence $T(n) \in O(n)$

• Assign contribution of subproblem to each node

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess
- Verify guess with subsitution method

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess
- Verify guess with subsitution method

Substitution Method

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess
- Verify guess with subsitution method

Substitution Method

• Guess correct solution

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess
- Verify guess with subsitution method

Substitution Method

- Guess correct solution
- Verify guess using mathematical induction

- Assign contribution of subproblem to each node
- Sum up contributions using tree structure
- Allows us to be sloppy, since we only aim for a good guess
- Verify guess with subsitution method

Substitution Method

- Guess correct solution
- Verify guess using mathematical induction
- Guessing can be difficult and requires experience