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Recursion Tree:
@ Each node represents cost of single subproblem

@ Recursive invocations become children of a node

Example
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Recursion Tree Method

Recursion Tree:
@ Each node represents cost of single subproblem

@ Recursive invocations become children of a node

Example
T(1)=1, T(n)=2T(|n/4])+ n/2

T(64) = 2T(16)+32=2(2T(4)+8)+ 32
= 2(2(2T(1) +2) +8) +32
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Recursion Tree Method

Recursion Tree:
@ Each node represents cost of single subproblem

@ Recursive invocations become children of a node

Example
T(1)=1, T(n)=2T(|n/4])+ n/2

T(64) = 2T(16)+32=2(2T(4)+8)+ 32
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Recursion Tree Method

Recursion Tree:
@ Each node represents cost of single subproblem

@ Recursive invocations become children of a node

Example
T(1)=1, T(n)=2T(|n/4])+ n/2

T(64) = 2T(16)+32=2(2T(4)+8)+ 32
= 2(2(2T(1)+2)+8) +32
= 2(2(2-1+2)+8)+32=64
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T(1)=1, T(n)=2T(|n/4])+ n/2
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T(1)=1, T(n)=2T(|n/4])+ n/2
~—
cost of subproblem

Recursion Tree for n = 64:
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T(1)=1, T(n)=2T(|n/4])+ n/2
~—

cost of subproblem

Sum of values assigned to nodes equals T(64)
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Obtaining a Good Guess for Solution

T(1)=1, T(n)=2T(|n/4])+n/2

Draw Recursion Tree for general n (Observe: we ignore |.|)

@ n/2
@ @ n/4
2 ) @3 @

00000000

Sum of Nodes in Level i: g (except the last level)
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Obtaining a Good Guess for Solution (2)

Number of Levels: /
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Obtaining a Good Guess for Solution (2)

Number of Levels 14

oWehaveM 1%1

o ( =logu(n)+1
Cost on last Level: = number of nodes on last level

log n

~ 2|0g4(n) — 2@
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Obtaining a Good Guess for Solution (2)

Number of Levels 14
@ We have 4( I ~1
o ( =logu(n)+1

Cost on last Level: = number of nodes on last level

~ 2l084(n) _ piekq _ olog(n)/2
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Number of Levels 14
@ We have 4( I ~1
o ( =logu(n)+1

Cost on last Level: = number of nodes on last level
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Obtaining a Good Guess for Solution (2)

Number of Levels 14

oWehaveM 1%1

o ( =logu(n)+1
Cost on last Level: = number of nodes on last level
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Obtaining a Good Guess for Solution (2)

Number of Levels 14

oWehaveM 1%1

o ( =logu(n)+1
Cost on last Level: = number of nodes on last level
1

~ 2log(n) — oiegd — olos(n)/2 — p} — /7 .

Our Guess:
log,(n)

Z%ﬂ/ﬁ

i=1
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Obtaining a Good Guess for Solution (2)
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Obtaining a Good Guess for Solution (2)

Number of Levels 14

@ We have ~1
4Z 1
o ( =logu(n)+1
Cost on last Level: = number of nodes on last level
1

~ 2log(n) — oiegd — olos(n)/2 — p} — /7 .

Our Guess:
log,(n) n log,(n) 1
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Obtaining a Good Guess for Solution (2)

Number of Levels 14

@ We have ~1
4Z 1
o ( =logu(n)+1
Cost on last Level: = number of nodes on last level
1

~ 2log(n) — oiegd — olos(n)/2 — p} — /7 .

Our Guess:
log,(n) n log,(n) 1
; 5 +Vn=|n- ; > +vn=n-0(1)+vn= 0(n).

geom. series

Use substitution method to prove that guess is correct!
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Verification via Substitution Method
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Verification via Substitution Method

T(1)=1, T(n)=2T(|n/4])+ n/2
Our Guess: T(n)<c-n

Substitute into the Recurrence:

n n c+1
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for every ¢ > 1.

Dr Christian Konrad Recurrences |l




Verification via Substitution Method

T(1)=1, T(n)=2T(|n/4])+ n/2
Our Guess: T(n)<c-n
Substitute into the Recurrence:

c+1
< c.
5 <c-n,

T(n) = 2T(|n/4])+n/2 < 2CL£J +g <n

for every ¢ > 1.

Verify the Base Case:

Dr Christian Konrad Recurrences |l 6/ 7



Verification via Substitution Method

T(1)=1, T(n)=2T(|n/4])+ n/2
Our Guess: T(n)<c-n
Substitute into the Recurrence:

c+1
<c-
> <c-n,

T(n) = 2T([n/4])+n/2 < 2CL£J +g <n

for every ¢ > 1.

Verify the Base Case: T(1)
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Verification via Substitution Method

T(1)=1, T(n)=2T(|n/4])+ n/2
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Verification via Substitution Method

T(1)=1, T(n)=2T(|n/4])+ n/2
Our Guess: T(n)<c-n

Substitute into the Recurrence:

c+1
5 =

T(n) = 2T(|n/4])+n/2 < 2CL£J +g <n
for every ¢ > 1.
Verify the Base Case: T(1)=1<c¢-1=c forevery c > 1.

Summary:
e We proved T(n) < n, for every n>1
@ Hence T(n) € O(n)
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Recursion Tree Method
@ Assign contribution of subproblem to each node
@ Sum up contributions using tree structure
@ Allows us to be sloppy, since we only aim for a good guess

@ Verify guess with subsitution method

Substitution Method

@ Guess correct solution

Dr Christian Konrad Recurrences |l 7/ 7



Recursion Tree Method
@ Assign contribution of subproblem to each node
@ Sum up contributions using tree structure
@ Allows us to be sloppy, since we only aim for a good guess

@ Verify guess with subsitution method

Substitution Method
@ Guess correct solution

@ Verify guess using mathematical induction

Dr Christian Konrad Recurrences |l 7/ 7



Recursion Tree Method
@ Assign contribution of subproblem to each node
@ Sum up contributions using tree structure
@ Allows us to be sloppy, since we only aim for a good guess

@ Verify guess with subsitution method

Substitution Method
@ Guess correct solution
@ Verify guess using mathematical induction

@ Guessing can be difficult and requires experience
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