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Pole Cutting (3)

There are 2! ways to cut a pole of length n.

Proof.

There are n — 1 positions where the pole can be cut. For each
position we either cut or we don't. This gives 27! possibilities. [

Problem:
o Find best out of 271 possibilities

@ We could disregard similar cuts, but we would still have an
exponential number of possibilities

@ A fast algorithm cannot try out all possibilities
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Pole Cutting (4)

Notation
7T=2+2+43

means we cut a pole of length 7 into pieces of lengths 2,2 and 3

Optimal Cut

@ Suppose the optimal cut uses k pieces
n:i1+i2+---+ik
@ Optimal revenue ry:

rn = p(i) + p(i) + - -+ p(ix)
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Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5 6 7 8 9 10
price p(i) |1 5 8 9 10 17 17 20 24 30

n =
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Pole Cutting (5)

What are the optimal revenues r;?
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Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5 6 7 8 9 10
price p(i) |1 5 8 9 10 17 17 20 24 30

n =1 1=1
rp = 5 2=2
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Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5 6 7 8 9 10
price p(i) |1 5 8 9 10 17 17 20 24 30

n =1 1=1
rp = 5 2=2
rn = 8 3=3
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Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5

6 7 8 9 10

price p(i) |1 5 8 9 10 17 17 20 24 30
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Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5

6 7 8 9 10

price p(i) |1 5 8 9 10 17 17 20 24 30
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4=2+2
5=243
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7=2+2+3
8=2+6
9=3+6
10=10
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Optimal Substructure

Optimal Substructure

o Consider an optimal solution to input length n
n=1i+i+---+ i, for some k

@ Then:
n—in=idh+4+---+ig

is an optimal solution to the problem of size n — iy
Computing Optimal Revenue r,:

rn - max{pn7r1 + rn—17r2 + rn—27~-7rn—1 + rl}
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Optimal Substructure

Optimal Substructure

o Consider an optimal solution to input length n
n=1i+i+---+ i, for some k

@ Then:
n—in=idh+4+---+ig

is an optimal solution to the problem of size n — iy
Computing Optimal Revenue r,:
= max{pf‘h n + rn—17 r2 + rn—27 sty n—1 + rl}

@ p, corresponds to the situation of no cut at all
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Optimal Substructure

Optimal Substructure

o Consider an optimal solution to input length n
n=1i+i+---+ i, for some k

@ Then:
n—in=idh+4+---+ig

is an optimal solution to the problem of size n — iy
Computing Optimal Revenue r,:
= max{pf‘h n + rn—17 r2 + rn—27 sty n—1 + rl}

@ p, corresponds to the situation of no cut at all

@ rj + r,_;: initial cut into two pieces of sizes / and n— i
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Pole Cutting: Dynamic Programming Formulation

Simpler Recursive Formulation: Let rp =0
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Pole Cutting: Dynamic Programming Formulation

Simpler Recursive Formulation: Let rp =0
rn = max (pj + rn—i) -

1<i<n

Observe: Only one subproblem in this formulation
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Pole Cutting: Dynamic Programming Formulation

Simpler Recursive Formulation: Let rp =0

rn = lgggn(pi + rn—i) -

Observe: Only one subproblem in this formulation

Example: n=14

rn=max{p1+r3,p2+r,p3+rn,ps+rn}
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Pole Cutting: Dynamic Programming Formulation

Simpler Recursive Formulation: Let rp =0

In= lrgggn(pi + rn—i) -

Observe: Only one subproblem in this formulation

Example: n=14

rn = max{p1 + r3,po+ro,p3+ri,pa+ro}

p1+nr3 p2+nr ps+n ps+ o

(WA Jode A8 JL48
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Recursive Top-down Implementation

Recall:

rhn= max (p;j+r—;)and n=0.
n 19_91([3: n I) 0

Direct Implementation:

Require: Integer n, Array p of length n with prices

if n =0 then
return 0
g —o0

fori=1...ndo
q < max{q, p[i] + CuT-POLE(p,n — i)}
return g
Algorithm CuT-POLE(p, n)
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Recursive Top-down Implementation

Recall:

rhn= max (p;j+r—;)and n=0.
n 19_91([3: n I) 0

Direct Implementation:

Require: Integer n, Array p of length n with prices

if n =0 then
return 0
g —o0

fori=1...ndo
q < max{q, p[i] + CuT-POLE(p,n — i)}
return g
Algorithm CuT-POLE(p, n)

How efficient is this algorithm?
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Recursion Tree for CUT-POLE

Example: n=5

Number Recursive Calls: T(n)
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Recursion Tree for CUT-POLE

Example: n=5

Number Recursive Calls: T(n)

n—1
T(n)=1+) T(j)and T(0)=1
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Solving Recurrence

How to Solve this Recurrence?

n—1

T(n)=1+) T(j)and T(0)=1
j=0
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Solving Recurrence

How to Solve this Recurrence?

n—1
T(n)=1+) T(j)and T(0)=1
j=0
@ Substitution Method: Using guess T(n) = O(c"), for some ¢
@ Trick: compute T(n) — T(n—1)
n—1 n—2
T(n)—T(n—1) = 1+> TG~ [1+D_T()
=0 =0

= T(n—1), hence:
T(n) = 2T(n—-1).
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Solving Recurrence

How to Solve this Recurrence?

n—1

T(n)=1+) T(j)and T(0)=1
j=0

@ Substitution Method: Using guess T(n) = O(c"), for some ¢
@ Trick: compute T(n) — T(n—1)

n—1 n—2
T(n)—T(n—1) = 1+> TG~ [1+D_T()
j=0 Jj=0

= T(n—1), hence:
T(n) = 2T(n—-1).

This implies T(i) = 2'.
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Runtime of Cut-Pole
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Discussion

Runtime of Cut-Pole
@ Recursion tree has 2" nodes
e Each function call takes time O(n) (for-loop)

@ Runtime of CUT-POLE is therefore O(n2"). (O(2") can also
be argued)

What can we do better?
@ Observe: We compute solutions to subproblems many times
@ Avoid this by storing solutions to subproblems in a table!

@ This is a key feature of dynamic programming
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Implementing the Dynamic Programming Approach

Top-down with memoization
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Implementing the Dynamic Programming Approach

Top-down with memoization
e When computing r;, store r; in a table T (of size n)

o Before computing r; again, check in T whether r; has
previously been computed

Bottom-up
o Fill table T from smallest to largest index

@ No recursive calls are needed for this
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Top-down Approach

Require: Integer n, Array p of length n with prices
Let r[0...n] be a new array
for i=0...ndo
r[i] «+ —o0
return MEMOIZED-CUT-POLE-AUX(p, n, r)
Algorithm MEMOIZED-CUT-POLE(p, n)

@ Prepare a table r of size n
@ Initialize all elements of r with —oco

@ Actual work is done in MEMOIZED-CUT-POLE-AUX, table r
is passed on to MEMOIZED-CUT-POLE-AUX

Dr Christian Konrad Dynamic Programming - Pole Cutting 14/ 17



Top-down Approach (2)

Require: Integer n, array p of length n with prices, array r of
revenues
if r[n] > 0 then
return r[n|
if n =0 then
g« 0
else
g+ —o0
fori=1...ndo
q < max{q, p[i] + MEMOIZED-CUT-POLE-AUX(p, n —
i)}
r[n] < q
return g
Algorithm MEMOIZED-CUT-POLE-AUX(p, n, r)

Observe: If r[n] > 0 then r[n] has been computed previously
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Bottom-up Approach

Require: Integer n, array p of length n with prices
Let r[0...n] be a new array
r[0] <0
forj=1...ndo
g < —00
fori=1...jdo
q < max{q, p[i] + r[j — i]}
rfl < q
return r[n]
Algorithm BorTOM-UP-CUT-POLE(p, n)
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Let r[0...n] be a new array
r[0] <0
forj=1...ndo
g < —00
fori=1...jdo
q < max{q, p[i] + r[j — i]}
rfl < q
return r[n]
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Runtime: Two nested for-loops
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Bottom-up Approach

Require: Integer n, array p of length n with prices
Let r[0...n] be a new array
r[0] <0
forj=1...ndo
g < —00
fori=1...jdo
q < max{q, p[i] + r[j — i]}
rfl < q
return r[n]
Algorithm BorTOM-UP-CUT-POLE(p, n)

Runtime: Two nested for-loops

n

S Y om=0m)Y Y 1=01)Y )= 0(1)”("2“) — 0(n?).

j=1i=1 j=1i=1 j=1
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Conclusion

Runtime of Top-down Approach O(n?)

(please think about this!)
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Conclusion
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Conclusion

Runtime of Top-down Approach O(n?)

(please think about this!)

Dynamic Programming
@ Solves a problem by combining subproblems
@ Subproblems are solved at most once, store solutions in table

@ If a problem exhibits optimal substructure then dynamic
programming is often the right choice

@ Top-down and bottom-up approaches have the same runtime
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