Dynamic Programming - Pole Cutting

COMS10017 - Algorithms 1

Dr Christian Konrad

Dr Christian Konrad Dynamic Programming - Pole Cutting 1/ 17

Pole Cutting

Pole-cutting:

Dr Christian Konrad Dynamic Programming - Pole Cutting

Pole Cutting

Pole-cutting:

@ Given is a pole of length n

Dr Christian Konrad Dynamic Programming - Pole Cutting

Pole Cutting

Pole-cutting:

@ Given is a pole of length n

Dr Christian Konrad Dynamic Programming - Pole Cutting

Pole Cutting

Pole-cutting:

@ Given is a pole of length n

Frrrrrrr

@ The pole can be cut into multiple pieces of integral lengths

Dr Christian Konrad Dynamic Programming - Pole Cutting

Pole Cutting

Pole-cutting:

@ Given is a pole of length n

Frrrrrrr

@ The pole can be cut into multiple pieces of integral lengths

@ A pole of length i is sold for price p(i), for some function p

Dr Christian Konrad Dynamic Programming - Pole Cutting

Pole Cutting

Pole-cutting:

@ Given is a pole of length n

Frrrrrrr

@ The pole can be cut into multiple pieces of integral lengths

@ A pole of length i is sold for price p(i), for some function p

Example:

Dr Christian Konrad Dynamic Programming - Pole Cutting

Pole Cutting

Pole-cutting:

@ Given is a pole of length n

Frrrrrrr

@ The pole can be cut into multiple pieces of integral lengths

@ A pole of length i is sold for price p(i), for some function p

Example:
lengthi |1 2 3 4 5 6 7 8 9 10
price p(i) |1 5 8 9 10 17 17 20 24 30

Dr Christian Konrad Dynamic Programming - Pole Cutting

Pole Cutting

Pole-cutting:

@ Given is a pole of length n

Frrrrrrr

@ The pole can be cut into multiple pieces of integral lengths

@ A pole of length i is sold for price p(i), for some function p

Example:
lengthi |1 2 3 4 5 6 7 8 9 10
price p(i) |1 5 8 9 10 17 17 20 24 30

Dr Christian Konrad Dynamic Programming - Pole Cutting

Pole Cutting (2)

Problem: POLE-CUTTING

Dr Christian Konrad Dynamic Programming - Pole Cutting 3/ 17

Pole Cutting (2)

Problem: POLE-CUTTING
@ Input: Price table p;, for every i > 1, length n of initial pole

Dr Christian Konrad Dynamic Programming - Pole Cutting 3/ 17

Pole Cutting (2)

Problem: POLE-CUTTING
@ Input: Price table p;, for every i > 1, length n of initial pole

@ Output: Maximum revenue r, obtainable by cutting pole into
smaller pieces

Dr Christian Konrad Dynamic Programming - Pole Cutting 3/ 17

Pole Cutting (2)

Problem: POLE-CUTTING
@ Input: Price table p;, for every i > 1, length n of initial pole

@ Output: Maximum revenue r, obtainable by cutting pole into
smaller pieces

How many ways of cutting the pole are there?

Dr Christian Konrad Dynamic Programming - Pole Cutting 3/ 17

Pole Cutting (2)

Problem: POLE-CUTTING
@ Input: Price table p;, for every i > 1, length n of initial pole

@ Output: Maximum revenue r, obtainable by cutting pole into
smaller pieces

How many ways of cutting the pole are there?

(9
(s AGads (AJd040

) oty e
O O [O

Dr Christian Konrad Dynamic Programming - Pole Cutting 3/ 17

Pole Cutting (3)

There are 2! ways to cut a pole of length n.

Dr Christian Konrad Dynamic Programming - Pole Cutting 4/ 17

Pole Cutting (3)

There are 2! ways to cut a pole of length n.

There are n — 1 positions where the pole can be cut. For each
position we either cut or we don't. This gives 27! possibilities. [

Dr Christian Konrad Dynamic Programming - Pole Cutting 4/ 17

Pole Cutting (3)

There are 2! ways to cut a pole of length n.

Proof.

There are n — 1 positions where the pole can be cut. For each
position we either cut or we don't. This gives 27! possibilities. [

Problem:

Dr Christian Konrad Dynamic Programming - Pole Cutting 4/ 17

Pole Cutting (3)

There are 2! ways to cut a pole of length n.

Proof.

There are n — 1 positions where the pole can be cut. For each
position we either cut or we don't. This gives 27! possibilities. [

Problem:

o Find best out of 271 possibilities

Dr Christian Konrad Dynamic Programming - Pole Cutting 4/ 17

Pole Cutting (3)

There are 2! ways to cut a pole of length n.

Proof.

There are n — 1 positions where the pole can be cut. For each
position we either cut or we don't. This gives 27! possibilities. [

Problem:
o Find best out of 271 possibilities

@ We could disregard similar cuts, but we would still have an
exponential number of possibilities

Dr Christian Konrad Dynamic Programming - Pole Cutting 4/ 17

Pole Cutting (3)

There are 2! ways to cut a pole of length n.

Proof.

There are n — 1 positions where the pole can be cut. For each
position we either cut or we don't. This gives 27! possibilities. [

Problem:
o Find best out of 271 possibilities

@ We could disregard similar cuts, but we would still have an
exponential number of possibilities

@ A fast algorithm cannot try out all possibilities

Dr Christian Konrad Dynamic Programming - Pole Cutting 4/ 17

Pole Cutting (4)

Notation

Dr Christian Konrad Dynamic Programming - Pole Cutting 5/ 17

Pole Cutting (4)

Notation
7T=2+2+43

means we cut a pole of length 7 into pieces of lengths 2,2 and 3

Dr Christian Konrad Dynamic Programming - Pole Cutting 5/ 17

Pole Cutting (4)

Notation
7T=2+2+43

means we cut a pole of length 7 into pieces of lengths 2,2 and 3

Optimal Cut

Dr Christian Konrad Dynamic Programming - Pole Cutting 5/ 17

Pole Cutting (4)

Notation
7T=2+2+43

means we cut a pole of length 7 into pieces of lengths 2,2 and 3

Optimal Cut

@ Suppose the optimal cut uses k pieces

n:i1+i2+---+ik

Dr Christian Konrad Dynamic Programming - Pole Cutting 5/ 17

Pole Cutting (4)

Notation
7T=2+2+43

means we cut a pole of length 7 into pieces of lengths 2,2 and 3

Optimal Cut

@ Suppose the optimal cut uses k pieces
n:i1+i2+---+ik
@ Optimal revenue ry:

rn = p(i) + p(i) + - -+ p(ix)

Dr Christian Konrad Dynamic Programming - Pole Cutting 5/ 17

Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5 6 7 8 9 10
price p(i) |1 5 8 9 10 17 17 20 24 30

n =

Dr Christian Konrad Dynamic Programming - Pole Cutting 6/ 17

Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5 6 7 8 9 10
price p(i) |1 5 8 9 10 17 17 20 24 30

n =1 1=1
rp =

Dr Christian Konrad Dynamic Programming - Pole Cutting 6/ 17

Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5 6 7 8 9 10
price p(i) |1 5 8 9 10 17 17 20 24 30

n =1 1=1
rp = 5 2=2
3 =

Dr Christian Konrad Dynamic Programming - Pole Cutting 6/ 17

Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5 6 7 8 9 10
price p(i) |1 5 8 9 10 17 17 20 24 30

n =1 1=1
rn =5

r = 8 3=3
=

Dr Christian Konrad Dynamic Programming - Pole Cutting 6/ 17

Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5 6 7 8 9 10
price p(i) |1 5 8 9 10 17 17 20 24 30

n =1 1=1
rp = 5 2=2
rn = 8 3=3
rn = 10 4=242
rs =

Dr Christian Konrad Dynamic Programming - Pole Cutting 6/ 17

Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5 6 7 8 9 10
price p(i) |1 5 8 9 10 17 17 20 24 30

n =1 1=1
rp = 5 2=2
rn = 8 3=3
rn = 10 4=242
s = 13 5=2+4+3
re =

Dr Christian Konrad Dynamic Programming - Pole Cutting 6/ 17

Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5

6 7 8 9 10

price p(i) |1 5 8 9 10 17 17 20 24 30

rn
r
r
ra
s
I'e
r

Dr Christian Konrad

10
13
17

1=1
2=2
3=3
4=2+42
5=2+4+3
6 —

Dynamic Programming - Pole Cutting 6/ 17

Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5

6 7 8 9 10

price p(i) |1 5 8 9 10 17 17 20 24 30

rn
r
r
ra
s
I'e
r

rs

Dr Christian Konrad

10
13
17
18

1=1
2=2
3=3
4=2+2
5=243
6=06
7=2+2+3

Dynamic Programming - Pole Cutting 6/ 17

Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5

6 7 8 9 10

price p(i) |1 5 8 9 10 17 17 20 24 30

rn
r
r
ra
s
I'e
r
Is

]

Dr Christian Konrad

10
13
17
18
22

1=1
2=2
3=3
4=2+2
5=243
6=06
7=2+2+3
8=2+6

Dynamic Programming - Pole Cutting 6/ 17

Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5

6 7 8 9 10

price p(i) |1 5 8 9 10 17 17 20 24 30

rn
r
r
ra
s
I'e
r
Is
g

rno

Dr Christian Konrad

10
13
17
18
22
25

1=1
2=2
3=3
4=2+2
5=243
6=06
7=2+2+3
8=2+6
9=3+6

Dynamic Programming - Pole Cutting 6/ 17

Pole Cutting (5)

What are the optimal revenues r;?

lengthi |1 2 3 4 5

6 7 8 9 10

price p(i) |1 5 8 9 10 17 17 20 24 30

rn
r
r
ra
s
I'e
r
Is
g

rno

Dr Christian Konrad

10
13
17
18
22
25
30

1=1
2=2
3=3
4=2+2
5=243
6=06
7=2+2+3
8=2+6
9=3+6
10=10

Dynamic Programming - Pole Cutting 6/ 17

Optimal Substructure

Optimal Substructure

Dr Christian Konrad Dynamic Programming - Pole Cutting 7/ 17

Optimal Substructure

Optimal Substructure

o Consider an optimal solution to input length n

n=1i+i+---+ i, for some k

Dr Christian Konrad Dynamic Programming - Pole Cutting 7/ 17

Optimal Substructure

Optimal Substructure

o Consider an optimal solution to input length n
n=1i+i+---+ i, for some k

@ Then:
n—in=idh+4+---+ig

is an optimal solution to the problem of size n — iy

Dr Christian Konrad Dynamic Programming - Pole Cutting 7/ 17

Optimal Substructure

Optimal Substructure

o Consider an optimal solution to input length n
n=1i+i+---+ i, for some k

@ Then:
n—in=idh+4+---+ig

is an optimal solution to the problem of size n — iy

Computing Optimal Revenue r,:

Dr Christian Konrad Dynamic Programming - Pole Cutting 7/ 17

Optimal Substructure

Optimal Substructure

o Consider an optimal solution to input length n
n=1i+i+---+ i, for some k

@ Then:
n—in=idh+4+---+ig

is an optimal solution to the problem of size n — iy
Computing Optimal Revenue r,:

rn - max{pn7r1 + rn—17r2 + rn—27~-7rn—1 + rl}

Dr Christian Konrad Dynamic Programming - Pole Cutting 7/ 17

Optimal Substructure

Optimal Substructure

o Consider an optimal solution to input length n
n=1i+i+---+ i, for some k

@ Then:
n—in=idh+4+---+ig

is an optimal solution to the problem of size n — iy
Computing Optimal Revenue r,:
= max{pf‘h n + rn—17 r2 + rn—27 sty n—1 + rl}

@ p, corresponds to the situation of no cut at all

Dr Christian Konrad Dynamic Programming - Pole Cutting 7/ 17

Optimal Substructure

Optimal Substructure

o Consider an optimal solution to input length n
n=1i+i+---+ i, for some k

@ Then:
n—in=idh+4+---+ig

is an optimal solution to the problem of size n — iy
Computing Optimal Revenue r,:
= max{pf‘h n + rn—17 r2 + rn—27 sty n—1 + rl}

@ p, corresponds to the situation of no cut at all

@ rj + r,_;: initial cut into two pieces of sizes / and n— i

Dr Christian Konrad Dynamic Programming - Pole Cutting 7/ 17

Pole Cutting: Dynamic Programming Formulation

Simpler Recursive Formulation: Let rp =0

Dr Christian Konrad Dynamic Programming - Pole Cutting 8/ 17

Pole Cutting: Dynamic Programming Formulation

Simpler Recursive Formulation: Let rp =0

rn = lgggn(pi + rn—i) -

Dr Christian Konrad Dynamic Programming - Pole Cutting 8/ 17

Pole Cutting: Dynamic Programming Formulation

Simpler Recursive Formulation: Let rp =0
rn = max (pj + rn—i) -

1<i<n

Observe: Only one subproblem in this formulation

Dr Christian Konrad Dynamic Programming - Pole Cutting 8/ 17

Pole Cutting: Dynamic Programming Formulation

Simpler Recursive Formulation: Let rp =0

rn = lgggn(pi + rn—i) -

Observe: Only one subproblem in this formulation

Example: n=14

rn=max{p1+r3,p2+r,p3+rn,ps+rn}

Dr Christian Konrad Dynamic Programming - Pole Cutting 8/ 17

Pole Cutting: Dynamic Programming Formulation

Simpler Recursive Formulation: Let rp =0

In= lrgggn(pi + rn—i) -

Observe: Only one subproblem in this formulation

Example: n=14

rn = max{p1 + r3,po+ro,p3+ri,pa+ro}

p1+nr3 p2+nr ps+n ps+ o

(WA Jode A8 JL48

Dr Christian Konrad Dynamic Programming - Pole Cutting 8/ 17

Recursive Top-down Implementation

Recall:

rhn= max (p;j+r—;)and n=0.
n 19_91([3: n I) 0

Direct Implementation:

Require: Integer n, Array p of length n with prices

if n =0 then
return 0
g —o0

fori=1...ndo
q < max{q, p[i] + CuT-POLE(p,n — i)}
return g
Algorithm CuT-POLE(p, n)

Dr Christian Konrad Dynamic Programming - Pole Cutting 9/ 17

Recursive Top-down Implementation

Recall:

rhn= max (p;j+r—;)and n=0.
n 19_91([3: n I) 0

Direct Implementation:

Require: Integer n, Array p of length n with prices

if n =0 then
return 0
g —o0

fori=1...ndo
q < max{q, p[i] + CuT-POLE(p,n — i)}
return g
Algorithm CuT-POLE(p, n)

How efficient is this algorithm?

Dr Christian Konrad Dynamic Programming - Pole Cutting 9/ 17

Recursion Tree for CUT-POLE

Example: n=5

Number Recursive Calls: T(n)

Dr Christian Konrad Dynamic Programming - Pole Cutting 10/ 17

Recursion Tree for CUT-POLE

Example: n=5

Number Recursive Calls: T(n)

n—1
T(n)=1+) T(j)and T(0)=1

Dynamic Programming - Pole Cutting 10/ 17

Solving Recurrence

How to Solve this Recurrence?

n—1

T(n)=1+) T(j)and T(0)=1
j=0

Dr Christian Konrad Dynamic Programming - Pole Cutting 11/ 17

Solving Recurrence

How to Solve this Recurrence?

n—1
T(n)=1+) T(j)and T(0)=1
j=0

@ Substitution Method: Using guess T(n) = O(c"), for some ¢

Dr Christian Konrad Dynamic Programming - Pole Cutting 11/ 17

Solving Recurrence

How to Solve this Recurrence?

n—1

T(n)=1+) T(j)and T(0)=1
j=0

@ Substitution Method: Using guess T(n) = O(c"), for some ¢
@ Trick: compute T(n) — T(n—1)

Dr Christian Konrad Dynamic Programming - Pole Cutting 11/ 17

Solving Recurrence

How to Solve this Recurrence?

n—1
T(n)=1+) T(j)and T(0)=1
j=0

@ Substitution Method: Using guess T(n) = O(c"), for some ¢
@ Trick: compute T(n) — T(n—1)

T(n)—T(n—1)

Dr Christian Konrad Dynamic Programming - Pole Cutting 11/ 17

Solving Recurrence

How to Solve this Recurrence?

n—1

T(n)=1+) T(j)and T(0)=1
j=0

@ Substitution Method: Using guess T(n) = O(c"), for some ¢
@ Trick: compute T(n) — T(n—1)

n—1 n—2
T(n)—T(n—1) = 1+> TG~ [1+D_T()
j=0 Jj=0

Dr Christian Konrad Dynamic Programming - Pole Cutting 11/ 17

Solving Recurrence

How to Solve this Recurrence?

n—1
T(n)=1+) T(j)and T(0)=1
j=0

@ Substitution Method: Using guess T(n) = O(c"), for some ¢
@ Trick: compute T(n) — T(n—1)

n—1 n—2
T(n)—T(n—1) = 1+> TG~ [1+D_T()
j=0 Jj=0

= T(n-1),

Dr Christian Konrad Dynamic Programming - Pole Cutting 11/ 17

Solving Recurrence

How to Solve this Recurrence?

n—1
T(n)=1+) T(j)and T(0)=1
j=0
@ Substitution Method: Using guess T(n) = O(c"), for some ¢
@ Trick: compute T(n) — T(n—1)
n—1 n—2
T(n)—T(n—1) = 1+> TG~ [1+D_T()
=0 =0

= T(n—1), hence:
T(n) = 2T(n—-1).

Dr Christian Konrad Dynamic Programming - Pole Cutting 11/ 17

Solving Recurrence

How to Solve this Recurrence?

n—1

T(n)=1+) T(j)and T(0)=1
j=0

@ Substitution Method: Using guess T(n) = O(c"), for some ¢
@ Trick: compute T(n) — T(n—1)

n—1 n—2
T(n)—T(n—1) = 1+> TG~ [1+D_T()
j=0 Jj=0

= T(n—1), hence:
T(n) = 2T(n—-1).

This implies T(i) = 2'.

Dr Christian Konrad Dynamic Programming - Pole Cutting 11/ 17

Discussion

Runtime of Cut-Pole

Dr Christian Konrad Dynamic Programming - Pole Cutting 12/ 17

Discussion

Runtime of Cut-Pole

@ Recursion tree has 2" nodes

Dr Christian Konrad Dynamic Programming - Pole Cutting 12/ 17

Discussion

Runtime of Cut-Pole
@ Recursion tree has 2" nodes

e Each function call takes time O(n) (for-loop)

Dr Christian Konrad Dynamic Programming - Pole Cutting 12/ 17

Discussion

Runtime of Cut-Pole
@ Recursion tree has 2" nodes
e Each function call takes time O(n) (for-loop)
@ Runtime of CUT-POLE is therefore O(n2").

Dr Christian Konrad Dynamic Programming - Pole Cutting 12/ 17

Discussion

Runtime of Cut-Pole
@ Recursion tree has 2" nodes
e Each function call takes time O(n) (for-loop)

@ Runtime of CUT-POLE is therefore O(n2"). (O(2") can also
be argued)

Dr Christian Konrad Dynamic Programming - Pole Cutting 12/ 17

Discussion

Runtime of Cut-Pole
@ Recursion tree has 2" nodes
e Each function call takes time O(n) (for-loop)

@ Runtime of CUT-POLE is therefore O(n2"). (O(2") can also
be argued)

What can we do better?

Dr Christian Konrad Dynamic Programming - Pole Cutting 12/ 17

Discussion

Runtime of Cut-Pole
@ Recursion tree has 2" nodes
e Each function call takes time O(n) (for-loop)

@ Runtime of CUT-POLE is therefore O(n2"). (O(2") can also
be argued)

What can we do better?

@ Observe: We compute solutions to subproblems many times

Dr Christian Konrad Dynamic Programming - Pole Cutting 12/ 17

Discussion

Runtime of Cut-Pole
@ Recursion tree has 2" nodes
e Each function call takes time O(n) (for-loop)

@ Runtime of CUT-POLE is therefore O(n2"). (O(2") can also
be argued)

What can we do better?
@ Observe: We compute solutions to subproblems many times

@ Avoid this by storing solutions to subproblems in a table!

Dr Christian Konrad Dynamic Programming - Pole Cutting 12/ 17

Discussion

Runtime of Cut-Pole
@ Recursion tree has 2" nodes
e Each function call takes time O(n) (for-loop)

@ Runtime of CUT-POLE is therefore O(n2"). (O(2") can also
be argued)

What can we do better?
@ Observe: We compute solutions to subproblems many times
@ Avoid this by storing solutions to subproblems in a table!

@ This is a key feature of dynamic programming

Dr Christian Konrad Dynamic Programming - Pole Cutting 12/ 17

Implementing the Dynamic Programming Approach

Top-down with memoization

Dr Christian Konrad Dynamic Programming - Pole Cutting

Implementing the Dynamic Programming Approach

Top-down with memoization
e When computing r;, store r; in a table T (of size n)

Dr Christian Konrad Dynamic Programming - Pole Cutting 13/ 17

Implementing the Dynamic Programming Approach

Top-down with memoization
e When computing r;, store r; in a table T (of size n)

o Before computing r; again, check in T whether r; has
previously been computed

Dr Christian Konrad Dynamic Programming - Pole Cutting 13/ 17

Implementing the Dynamic Programming Approach

Top-down with memoization
e When computing r;, store r; in a table T (of size n)

o Before computing r; again, check in T whether r; has
previously been computed

Bottom-up

Dr Christian Konrad Dynamic Programming - Pole Cutting 13/ 17

Implementing the Dynamic Programming Approach

Top-down with memoization
e When computing r;, store r; in a table T (of size n)

o Before computing r; again, check in T whether r; has
previously been computed

Bottom-up

o Fill table T from smallest to largest index

Dr Christian Konrad Dynamic Programming - Pole Cutting 13/ 17

Implementing the Dynamic Programming Approach

Top-down with memoization
e When computing r;, store r; in a table T (of size n)

o Before computing r; again, check in T whether r; has
previously been computed

Bottom-up
o Fill table T from smallest to largest index

@ No recursive calls are needed for this

Dr Christian Konrad Dynamic Programming - Pole Cutting 13/ 17

Top-down Approach

Require: Integer n, Array p of length n with prices
Let r[0...n] be a new array
for i=0...ndo
r[i] «+ —o0
return MEMOIZED-CUT-POLE-AUX(p, n, r)
Algorithm MEMOIZED-CUT-POLE(p, n)

@ Prepare a table r of size n
@ Initialize all elements of r with —oco

@ Actual work is done in MEMOIZED-CUT-POLE-AUX, table r
is passed on to MEMOIZED-CUT-POLE-AUX

Dr Christian Konrad Dynamic Programming - Pole Cutting 14/ 17

Top-down Approach (2)

Require: Integer n, array p of length n with prices, array r of
revenues
if r[n] > 0 then
return r[n|
if n =0 then
g« 0
else
g+ —o0
fori=1...ndo
q < max{q, p[i] + MEMOIZED-CUT-POLE-AUX(p, n —
i)}
r[n] < q
return g
Algorithm MEMOIZED-CUT-POLE-AUX(p, n, r)

Observe: If r[n] > 0 then r[n] has been computed previously

Dr Christian Konrad Dynamic Programming - Pole Cutting 15/ 17

Bottom-up Approach

Require: Integer n, array p of length n with prices
Let r[0...n] be a new array
r[0] <0
forj=1...ndo
g < —00
fori=1...jdo
q < max{q, p[i] + r[j — i]}
rfl < q
return r[n]
Algorithm BorTOM-UP-CUT-POLE(p, n)

Dr Christian Konrad Dynamic Programming - Pole Cutting 16/ 17

Bottom-up Approach

Require: Integer n, array p of length n with prices
Let r[0...n] be a new array
r[0] <0
forj=1...ndo
g < —00
fori=1...jdo
q < max{q, p[i] + r[j — i]}
rfl < q
return r[n]
Algorithm BorTOM-UP-CUT-POLE(p, n)

Runtime: Two nested for-loops

Dr Christian Konrad Dynamic Programming - Pole Cutting 16/ 17

Bottom-up Approach

Require: Integer n, array p of length n with prices
Let r[0...n] be a new array
r[0] <0
forj=1...ndo
g < —00
fori=1...jdo
q < max{q, p[i] + r[j — i]}
rfl < q
return r[n]
Algorithm BorTOM-UP-CUT-POLE(p, n)

Runtime: Two nested for-loops

n

S Y om=0m)Y Y 1=01)Y)= 0(1)”("2“) — 0(n?).

j=1i=1 j=1i=1 j=1

Dr Christian Konrad Dynamic Programming - Pole Cutting 16/ 17

Conclusion

Runtime of Top-down Approach O(n?)

(please think about this!)

Dr Christian Konrad Dynamic Programming - Pole Cutting 17/ 17

Conclusion

Runtime of Top-down Approach O(n?)

(please think about this!)

Dynamic Programming

Dr Christian Konrad Dynamic Programming - Pole Cutting 17/ 17

Conclusion

Runtime of Top-down Approach O(n?)

(please think about this!)

Dynamic Programming

@ Solves a problem by combining subproblems

Dr Christian Konrad Dynamic Programming - Pole Cutting 17/ 17

Conclusion

Runtime of Top-down Approach O(n?)

(please think about this!)

Dynamic Programming
@ Solves a problem by combining subproblems

@ Subproblems are solved at most once, store solutions in table

Dr Christian Konrad Dynamic Programming - Pole Cutting 17/ 17

Conclusion

Runtime of Top-down Approach O(n?)

(please think about this!)

Dynamic Programming
@ Solves a problem by combining subproblems
@ Subproblems are solved at most once, store solutions in table

@ If a problem exhibits optimal substructure then dynamic
programming is often the right choice

Dr Christian Konrad Dynamic Programming - Pole Cutting 17/ 17

Conclusion

Runtime of Top-down Approach O(n?)

(please think about this!)

Dynamic Programming
@ Solves a problem by combining subproblems
@ Subproblems are solved at most once, store solutions in table

@ If a problem exhibits optimal substructure then dynamic
programming is often the right choice

@ Top-down and bottom-up approaches have the same runtime

Dr Christian Konrad Dynamic Programming - Pole Cutting 17/ 17

