Dynamic Programming - Pole Cutting COMS10017 - Algorithms 1

Dr Christian Konrad

Pole-cutting:

Pole-cutting:

• Given is a pole of length *n*

Pole-cutting:

• Given is a pole of length *n*

Pole-cutting:

• Given is a pole of length *n*

• The pole can be cut into multiple pieces of integral lengths

Pole-cutting:

• Given is a pole of length n

- The pole can be cut into multiple pieces of integral lengths
- A pole of length *i* is sold for price p(i), for some function p

Pole-cutting:

• Given is a pole of length n

- The pole can be cut into multiple pieces of integral lengths
- A pole of length *i* is sold for price p(i), for some function p

Example:

Pole-cutting:

• Given is a pole of length n

- The pole can be cut into multiple pieces of integral lengths
- A pole of length *i* is sold for price p(i), for some function p

Example:

-

length i
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

 price
$$p(i)$$
 1
 5
 8
 9
 10
 17
 17
 20
 24
 30

Pole-cutting:

• Given is a pole of length n

- The pole can be cut into multiple pieces of integral lengths
- A pole of length *i* is sold for price p(i), for some function *p*

Example:

length i
1
2
3
4
5
6
7
8
9
10

price
$$p(i)$$
1
5
8
9
10
17
17
20
24
30

Image: point of the state of t

Problem: POLE-CUTTING

1 Input: Price table p_i , for every $i \ge 1$, length *n* of initial pole

- **1 Input:** Price table p_i , for every $i \ge 1$, length *n* of initial pole
- Output: Maximum revenue r_n obtainable by cutting pole into smaller pieces

- **1 Input:** Price table p_i , for every $i \ge 1$, length *n* of initial pole
- Output: Maximum revenue r_n obtainable by cutting pole into smaller pieces

How many ways of cutting the pole are there?

- **1 Input:** Price table p_i , for every $i \ge 1$, length *n* of initial pole
- Output: Maximum revenue r_n obtainable by cutting pole into smaller pieces

How many ways of cutting the pole are there?

Proof.

There are n-1 positions where the pole can be cut. For each position we either cut or we don't. This gives 2^{n-1} possibilities.

Proof.

There are n-1 positions where the pole can be cut. For each position we either cut or we don't. This gives 2^{n-1} possibilities.

Problem:

Proof.

There are n-1 positions where the pole can be cut. For each position we either cut or we don't. This gives 2^{n-1} possibilities.

Problem:

• Find best out of 2^{n-1} possibilities

Proof.

There are n-1 positions where the pole can be cut. For each position we either cut or we don't. This gives 2^{n-1} possibilities.

Problem:

- Find best out of 2^{n-1} possibilities
- We could disregard similar cuts, but we would still have an exponential number of possibilities

Proof.

There are n-1 positions where the pole can be cut. For each position we either cut or we don't. This gives 2^{n-1} possibilities.

Problem:

- Find best out of 2^{n-1} possibilities
- We could disregard similar cuts, but we would still have an exponential number of possibilities
- A fast algorithm cannot try out all possibilities

$$7 = 2 + 2 + 3$$

means we cut a pole of length 7 into pieces of lengths 2,2 and 3

$$7 = 2 + 2 + 3$$

means we cut a pole of length 7 into pieces of lengths 2,2 and 3

Optimal Cut

$$7 = 2 + 2 + 3$$

means we cut a pole of length 7 into pieces of lengths 2,2 and 3

Optimal Cut

• Suppose the optimal cut uses k pieces

$$n=i_1+i_2+\cdots+i_k$$

$$7 = 2 + 2 + 3$$

means we cut a pole of length 7 into pieces of lengths 2,2 and 3

Optimal Cut

• Suppose the optimal cut uses k pieces

$$n=i_1+i_2+\cdots+i_k$$

• Optimal revenue r_n:

$$r_n = p(i_1) + p(i_2) + \cdots + p(i_k)$$

What are the optimal revenues r_i ?

length <i>i</i>	1	2	3	4	5	6	7	8	9	10
price $p(i)$	1	5	8	9	10	17	17	20	24	30

 $r_1 =$

length <i>i</i>	1	2	3	4	5	6	7	8	9	10
price $p(i)$	1	5	8	9	10	17	17	20	24	30
	r_1	=	1		1	= 1				
	r_2	=								

length <i>i</i>	1	2	3	4	5	6	7	8	9	10
price $p(i)$	1	5	8	9	10	17	17	20	24	30
	r_1	=	1		1	= 1				
	<i>r</i> ₂	=	5		2	2 = 2				
	r ₃	=								

length <i>i</i>	1	2	3	4	5	6	7	8	9	10
price p(i)	1	5	8	9	10	17	17	20	24	30
	r_1	=	1		1	= 1				
	<i>r</i> ₂	=	5		2	2 = 2				
	r ₃	=	8		3	8 = 3				
	r ₄	=								

length <i>i</i>	1	2	3	4	5	6	7	8	9	10
price p(i)	1	5	8	9	10	17	17	20	24	30
	r_1	=	1		1	= 1				
	<i>r</i> ₂	=	5		2	2 = 2				
	r ₃	=	8		3	8 = 3				
	<i>r</i> ₄	=	10		4	= 2	+ 2			
	<i>r</i> 5	=								

length <i>i</i>	1	2	3	4	5	6	7	8	9	10
price p(i)	1	5	8	9	10	17	17	20	24	30
	r_1	=	1		1	. = 1				
	<i>r</i> ₂	=	5		2	2 = 2				
	r ₃	=	8		3	8 = 3				
	r ₄	=	10)	4	= 2	+ 2			
	<i>r</i> 5	=	13	}	5	= 2	+ 3			
	<i>r</i> 6	=								

length <i>i</i>	1	2	3	4	5	6	7	8	9	10
price $p(i)$	1	5	8	9	10	17	17	20	24	30
	r_1	=	1		1	=1				
	<i>r</i> ₂	=	5		2	2 = 2				
	r ₃	=	8		3	8 = 3				
	<i>r</i> ₄	=	10)	4	= 2	+ 2			
	<i>r</i> 5	=	13	3	5	= 2	+ 3			
	<i>r</i> ₆	=	17	,	6	= 6				
	r 7	=								

length <i>i</i>	1	2	3	4	5	6	7	8	9	10
price $p(i)$	1	5	8	9	10	17	17	20	24	30
	r_1	=	1		1	l = 1				
	<i>r</i> ₂	=	5		2	2 = 2				
	r ₃	=	8		3	3 = 3				
	r ₄	=	10)	4	= 2	+ 2			
	<i>r</i> 5	=	13	8	5	= 2	+ 3			
	<i>r</i> 6	=	17	,	6	= 6				
	r 7	=	18	3	7	= 2	+ 2 +	- 3		
	r ₈	=								

length <i>i</i>	1	2	3	4	5	6	7	8	9	10
price $p(i)$	1	5	8	9	10	17	17	20	24	30
	r_1	=	1		1	l = 1				
	r_2	=	5		2	2 = 2				
	r ₃	=	8		3	3 = 3				
	<i>r</i> 4	=	10)	4	= 2	+ 2			
	<i>r</i> 5	=	13	3	5	= 2	+ 3			
	<i>r</i> 6	=	17	,	6	= 6				
	r 7	=	18	8	7	= 2	+ 2 +	- 3		
	<i>r</i> 8	=	22	2	8	= 2	+ 6			
	r9	=								

_

length <i>i</i>	1	2	3	4	5	6	7	8	9	10
price $p(i)$	1	5	8	9	10	17	17	20	24	30
	r_1	=	1		1	=1				
	<i>r</i> ₂	=	5		2	2 = 2				
	r ₃	=	8		3	5 = 3				
	r ₄	=	10		4	= 2	+ 2			
	<i>r</i> 5	=	13		5	= 2	+ 3			
	<i>r</i> 6	=	17		6	= 6				
	r 7	=	18		7	= 2	+ 2 +	- 3		
	r ₈	=	22		8	= 2	+ 6			
	r ₉	=	25		9	= 3	+ 6			
	<i>r</i> ₁₀	=								

_

length <i>i</i>	1	2	3	4	5	6	7	8	9	10
price $p(i)$	1	5	8	9	10	17	17	20	24	30
	r_1	=	1		1	= 1				
	<i>r</i> ₂	=	5		2	= 2				
	r ₃	=	8		3	= 3				
	<i>r</i> 4	=	10		4	= 2 -	+ 2			
	<i>r</i> 5	=	13		5	= 2 -	+ 3			
	<i>r</i> ₆	=	17		6	= 6				
	r 7	=	18		7	= 2 -	+ 2 +	- 3		
	r 8	=	22		8	= 2 -	+ 6			
	r ₉	=	25		9	= 3 -	+ 6			
	<i>r</i> ₁₀	=	30		10	0 = 1	0			
• Consider an optimal solution to input length n

$$n = i_1 + i_2 + \cdots + i_k$$
 for some k

Optimal Substructure

• Consider an optimal solution to input length n

$$n = i_1 + i_2 + \cdots + i_k$$
 for some k

• Then:

$$n-i_1=i_2+\cdots+i_k$$

is an optimal solution to the problem of size $n - i_1$

Optimal Substructure

• Consider an optimal solution to input length n

 $n = i_1 + i_2 + \cdots + i_k$ for some k

• Then:

$$n-i_1=i_2+\cdots+i_k$$

is an optimal solution to the problem of size $n - i_1$

Computing Optimal Revenue *r_n*:

Optimal Substructure

• Consider an optimal solution to input length n

$$n = i_1 + i_2 + \cdots + i_k$$
 for some k

• Then:

$$n-i_1=i_2+\cdots+i_k$$

is an optimal solution to the problem of size $n - i_1$

Computing Optimal Revenue *r_n*:

$$r_n = \max\{p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1\}$$

Optimal Substructure

• Consider an optimal solution to input length n

 $n = i_1 + i_2 + \cdots + i_k$ for some k

• Then:

$$n-i_1=i_2+\cdots+i_k$$

is an optimal solution to the problem of size $n - i_1$

Computing Optimal Revenue *r_n*:

$$r_n = \max\{p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1\}$$

• p_n corresponds to the situation of no cut at all

Optimal Substructure

• Consider an optimal solution to input length n

$$n = i_1 + i_2 + \cdots + i_k$$
 for some k

• Then:

$$n-i_1=i_2+\cdots+i_k$$

is an optimal solution to the problem of size $n - i_1$

Computing Optimal Revenue *r_n*:

$$r_n = \max\{p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1\}$$

- p_n corresponds to the situation of no cut at all
- $r_i + r_{n-i}$: initial cut into two pieces of sizes *i* and n i

Simpler Recursive Formulation: Let $r_0 = 0$

Simpler Recursive Formulation: Let $r_0 = 0$

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i}) \; .$$

Simpler Recursive Formulation: Let $r_0 = 0$

$$r_n = \max_{1 \leq i \leq n} (p_i + r_{n-i}) \; .$$

Observe: Only one subproblem in this formulation

Simpler Recursive Formulation: Let $r_0 = 0$

$$r_n = \max_{1 \leq i \leq n} (p_i + r_{n-i}) \; .$$

Observe: Only one subproblem in this formulation

Example: n = 4

$$r_n = \max\{p_1 + r_3, p_2 + r_2, p_3 + r_1, p_4 + r_0\}$$

Simpler Recursive Formulation: Let $r_0 = 0$

$$r_n = \max_{1 \le i \le n} (p_i + r_{n-i}) \; .$$

Observe: Only one subproblem in this formulation

Example: n = 4

$$r_n = \max\{p_1 + r_3, p_2 + r_2, p_3 + r_1, p_4 + r_0\}$$

Recursive Top-down Implementation

Recall:

$$r_n = \max_{1 \leq i \leq n} (p_i + r_{n-i})$$
 and $r_0 = 0$.

Direct Implementation:

Require: Integer *n*, Array *p* of length *n* with prices **if** n = 0 **then return** 0 $q \leftarrow -\infty$ **for** $i = 1 \dots n$ **do** $q \leftarrow \max\{q, p[i] + \text{CUT-POLE}(p, n - i)\}$ **return** *q*

Algorithm CUT-POLE(p, n)

Recursive Top-down Implementation

Recall:

$$r_n = \max_{1 \leq i \leq n} (p_i + r_{n-i})$$
 and $r_0 = 0$.

Direct Implementation:

Require: Integer *n*, Array *p* of length *n* with prices **if** n = 0 **then return** 0 $q \leftarrow -\infty$ **for** $i = 1 \dots n$ **do** $q \leftarrow \max\{q, p[i] + \text{CUT-POLE}(p, n - i)\}$ **return** *q*

Algorithm CUT-POLE(p, n)

How efficient is this algorithm?

Recursion Tree for CUT-POLE

Number Recursive Calls: T(n)

Recursion Tree for CUT-POLE

Number Recursive Calls: T(n)

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$
 and $T(0) = 1$

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$
 and $T(0) = 1$

How to Solve this Recurrence?

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$
 and $T(0) = 1$

• Substitution Method: Using guess $T(n) = O(c^n)$, for some c

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$
 and $T(0) = 1$

- Substitution Method: Using guess $T(n) = O(c^n)$, for some c
- Trick: compute T(n) T(n-1)

How to Solve this Recurrence?

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$
 and $T(0) = 1$

- Substitution Method: Using guess $T(n) = O(c^n)$, for some c
- Trick: compute T(n) T(n-1)

T(n) - T(n-1)

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$
 and $T(0) = 1$

- Substitution Method: Using guess $T(n) = O(c^n)$, for some c
- Trick: compute T(n) T(n-1)

$$T(n) - T(n-1) = 1 + \sum_{j=0}^{n-1} T(j) - \left(1 + \sum_{j=0}^{n-2} T(j)\right)$$

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$
 and $T(0) = 1$

- Substitution Method: Using guess $T(n) = O(c^n)$, for some c
- Trick: compute T(n) T(n-1)

$$egin{array}{rcl} T(n) - T(n-1) &=& 1 + \sum_{j=0}^{n-1} T(j) - \left(1 + \sum_{j=0}^{n-2} T(j)
ight) \ &=& T(n-1) \;, \end{array}$$

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$
 and $T(0) = 1$

- Substitution Method: Using guess $T(n) = O(c^n)$, for some c
- Trick: compute T(n) T(n-1)

$$T(n) - T(n-1) = 1 + \sum_{j=0}^{n-1} T(j) - \left(1 + \sum_{j=0}^{n-2} T(j)\right)$$

= $T(n-1)$, hence:
 $T(n) = 2T(n-1)$.

How to Solve this Recurrence?

$$T(n) = 1 + \sum_{j=0}^{n-1} T(j)$$
 and $T(0) = 1$

- Substitution Method: Using guess $T(n) = O(c^n)$, for some c
- Trick: compute T(n) T(n-1)

$$T(n) - T(n-1) = 1 + \sum_{j=0}^{n-1} T(j) - \left(1 + \sum_{j=0}^{n-2} T(j)\right)$$

= $T(n-1)$, hence:
 $T(n) = 2T(n-1)$.

This implies $T(i) = 2^i$.

• Recursion tree has 2^n nodes

- Recursion tree has 2^n nodes
- Each function call takes time O(n) (for-loop)

- Recursion tree has 2^n nodes
- Each function call takes time O(n) (for-loop)
- Runtime of CUT-POLE is therefore $O(n2^n)$.

- Recursion tree has 2^n nodes
- Each function call takes time O(n) (for-loop)
- Runtime of CUT-POLE is therefore $O(n2^n)$. $(O(2^n)$ can also be argued)

- Recursion tree has 2^n nodes
- Each function call takes time O(n) (for-loop)
- Runtime of CUT-POLE is therefore $O(n2^n)$. $(O(2^n)$ can also be argued)

What can we do better?

- Recursion tree has 2^n nodes
- Each function call takes time O(n) (for-loop)
- Runtime of CUT-POLE is therefore $O(n2^n)$. $(O(2^n)$ can also be argued)

What can we do better?

• Observe: We compute solutions to subproblems many times

- Recursion tree has 2^n nodes
- Each function call takes time O(n) (for-loop)
- Runtime of CUT-POLE is therefore $O(n2^n)$. $(O(2^n)$ can also be argued)

What can we do better?

- Observe: We compute solutions to subproblems many times
- Avoid this by storing solutions to subproblems in a table!

- Recursion tree has 2^n nodes
- Each function call takes time O(n) (for-loop)
- Runtime of CUT-POLE is therefore $O(n2^n)$. $(O(2^n)$ can also be argued)

What can we do better?

- Observe: We compute solutions to subproblems many times
- Avoid this by storing solutions to subproblems in a table!
- This is a key feature of dynamic programming

Top-down with memoization

Top-down with memoization

• When computing r_i , store r_i in a table T (of size n)

Top-down with memoization

- When computing r_i , store r_i in a table T (of size n)
- Before computing r_i again, check in T whether r_i has previously been computed
Top-down with memoization

- When computing r_i , store r_i in a table T (of size n)
- Before computing r_i again, check in T whether r_i has previously been computed

Bottom-up

Top-down with memoization

- When computing r_i , store r_i in a table T (of size n)
- Before computing r_i again, check in T whether r_i has previously been computed

Bottom-up

• Fill table T from smallest to largest index

Top-down with memoization

- When computing r_i , store r_i in a table T (of size n)
- Before computing r_i again, check in T whether r_i has previously been computed

Bottom-up

- Fill table T from smallest to largest index
- No recursive calls are needed for this

Require: Integer *n*, Array *p* of length *n* with prices Let r[0...n] be a new array for i = 0...n do $r[i] \leftarrow -\infty$ return MEMOIZED-CUT-POLE-AUX(*p*, *n*, *r*)

Algorithm MEMOIZED-CUT-POLE(p, n)

- Prepare a table r of size n
- Initialize all elements of r with $-\infty$
- Actual work is done in MEMOIZED-CUT-POLE-AUX, table *r* is passed on to MEMOIZED-CUT-POLE-AUX

Require: Integer *n*, array *p* of length *n* with prices, array *r* of revenues if $r[n] \ge 0$ then **return** r[n]if n = 0 then $q \leftarrow 0$ else $q \leftarrow -\infty$ for $i = 1 \dots n$ do $q \leftarrow \max\{q, p[i] + \text{MEMOIZED-CUT-POLE-AUX}(p, n - p_i)\}$ i, r $r[n] \leftarrow q$ return q

Algorithm MEMOIZED-CUT-POLE-AUX(p, n, r)

Observe: If $r[n] \ge 0$ then r[n] has been computed previously

Bottom-up Approach

```
Require: Integer n, array p of length n with prices

Let r[0...n] be a new array

r[0] \leftarrow 0

for j = 1...n do

q \leftarrow -\infty

for i = 1...j do

q \leftarrow \max\{q, p[i] + r[j - i]\}

r[j] \leftarrow q

return r[n]
```

Algorithm BOTTOM-UP-CUT-POLE(p, n)

Bottom-up Approach

```
Require: Integer n, array p of length n with prices

Let r[0...n] be a new array

r[0] \leftarrow 0

for j = 1...n do

q \leftarrow -\infty

for i = 1...j do

q \leftarrow \max\{q, p[i] + r[j - i]\}

r[j] \leftarrow q

return r[n]

Algorithm BOTTOM-UP-CUT-POLE(p, n)
```

Runtime: Two nested for-loops

Require: Integer *n*, array *p* of length *n* with prices Let r[0...n] be a new array $r[0] \leftarrow 0$ for j = 1...n do $q \leftarrow -\infty$ for i = 1...j do $q \leftarrow \max\{q, p[i] + r[j - i]\}$ $r[j] \leftarrow q$ return r[n]Algorithm BOTTOM-UP-CUT-POLE(p, n)

Runtime: Two nested for-loops

$$\sum_{j=1}^{n} \sum_{i=1}^{j} O(1) = O(1) \sum_{j=1}^{n} \sum_{i=1}^{j} 1 = O(1) \sum_{j=1}^{n} j = O(1) \frac{n(n+1)}{2} = O(n^2) .$$

(please think about this!)

(please think about this!)

(please think about this!)

Dynamic Programming

• Solves a problem by combining subproblems

(please think about this!)

- Solves a problem by combining subproblems
- Subproblems are solved at most once, store solutions in table

(please think about this!)

- Solves a problem by combining subproblems
- Subproblems are solved at most once, store solutions in table
- If a problem exhibits *optimal substructure* then dynamic programming is often the right choice

(please think about this!)

- Solves a problem by combining subproblems
- Subproblems are solved at most once, store solutions in table
- If a problem exhibits *optimal substructure* then dynamic programming is often the right choice
- Top-down and bottom-up approaches have the same runtime