
Exercise Sheet 1: Answers

COMS10017 Algorithms 2023/2024

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

Example Question: Big-O Notation

Question. Give a formal proof of the following statement using the definition of Big-O from
the lecture (i.e., identify positive constants c, n0 for which the definition holds):

5
√
n ∈ O(n) .

Solution. We need to show that there are positive constants c, n0 such that 5
√
n ≤ c ·n holds,

for every n ≥ n0. This is equivalent to showing that (5c)
2 ≤ n holds.

We choose c = 5, which implies 1 ≤ n. We can thus select n0 = 1, since then 1 ≤ n holds for
every n ≥ n0. This prove that 5

√
n ∈ O(n).

Remark: Observe that there are many other combinations of values for c and n0 that satisfy
the inequality we need to prove. For example, if we pick c = 1 then we obtain 25 ≤ n (which
follows from (5c)

2 ≤ n). In this case, we would have to choose a value for n0 that is greater or
equal to 25, in particular, n0 = 25 would do. ✓

1 O-notation: Part I

Give formal proofs of the following statements using the definition of Big-O from the lecture
(i.e., identify positive constants c, n0 for which the definition holds):

1. n2 + 10n+ 8 ∈ O(12n
2) .

Solution. We need to show that there are positive constants c, n0 such that n2+10n+8 ≤
c · 1

2n
2, for every n ≥ n0. To make our life easier, we use the following estimate:

n2 + 10n+ 8 ≤ n2 + 10n2 + 8n2 = 19n2 ,

which holds for every n ≥ 1. If we can prove that there are constants c, n0 such that
19n2 ≤ c · 1

2n
2 holds for every n ≥ n0, then these constants also work for showing that

n2 + 10n+ 8 ≤ c · 1
2n

2 for every n ≥ n0.

This, however, is easy: We can pick c = 38 and n0 = 1, which completes the proof. ✓

2. n3 + n2 + n = O(n3) .

1

Solution. We need to show that there are constants c, n0 such that n3 + n2 +n ≤ c ·n3

holds for every n ≥ n0. Using the idea from the previous exercise, we use the inequality
n3+n2+n ≤ 3n3, which holds for every n ≥ 1, and prove instead that there are constants
c, n0 such that 3n3 ≤ cn3 holds for every n ≥ n0. Again, this is easy to do: We pick c = 3
and n0 = 1. ✓

3. 10 ∈ O(1) .

Solution. We need to show that there are positive constants c, n0 such that 10 ≤ c · 1,
for every n ≥ n0. Observe that this expression does not depend on n at all. Therefore
any positive value for n0 would work, e.g., n0 = 1 (or n0 = 23 or any other value). We
choose c = 10 which implies that 10 ≤ c · 1 is satisfied. This proves that 10 ∈ O(1). ✓

4.
∑n

i=1 i ∈ O(4n2) .

Solution. First, observe that
∑n

i=1 i = n(n + 1)/2 = n2

2 + n
2 . We need to find positive

constants c, n0 such that n2

2 + n
2 ≤ c ·4n2, for every n ≥ n0. We pick n0 = 1. Since n ≤ n2,

for every n ≥ n0 = 1, we will satisfy the inequality n2

2 + n2

2 ≤ c · 4n2, which is equivalent
to 1 ≤ 4c. We can hence pick c = 1 and we are done. ✓

2 Racetrack Principle

Use the racetrack principle to prove the following statement:

n ≤ en holds for every n ≥ 1 .

Solution. First, we verify that n ≤ en holds for n = n0 = 1. This is true, since 1 ≤ e holds.
Next, we verify that (n)′ ≤ (en)′ holds for every n ≥ n0. We have (n)′ = 1 and (en)′ = en. We
thus need to show that 1 ≤ en holds for every n ≥ 1. Taking the natural logarithm on both
sides, we obtain 0 ≤ n, which is true for every n ≥ n0 = 1. Hence, n ≤ en holds for every n ≥ 1.
✓

3 O-notation: Part II

Give formal proofs of the following statements using the definition of Big-O from the lecture.

1. f ∈ O(h1), g ∈ O(h2) then f · g ∈ O(h1 · h2) .

Solution. Similar as in the previous exercise, we know that there are constants c1, c2, n1, n2

such that f(n) ≤ c1 · h1(n), for every n ≥ n1, and g(n) ≤ c2 · h2(n), for every n ≥ n2.
Then:

f(n) · g(n) ≤ c1 · h1(n) · c2 · h2(n) = c1c2 · h1(n)h2(n)

for every n ≥ max{n1, n2}. We thus select C = c1 · c2 and N = max{n1, n2} and obtain
f(n)g(n) ≤ C(h1(n)h2(n)), for every n ≥ N . ✓

2. 2n ∈ O(n!) .

2

Solution. To prove this statement, we will show that 2n ≤ C · n! holds for C = 2 and
every n ≥ 2. To this end, observe that 2n ≤ 2n! is equivalent to 2n−1 ≤ n!. Observe that

2n−1 = 2 · 2 · · · · · 2︸ ︷︷ ︸
(n−1) times

,

and
n! = 2 · 3 · · · · · n︸ ︷︷ ︸

(n−1) factors, each larger equal to 2

.

Trading off the factors of the two expressions, we see that 2n−1 ≤ n!, which proves the
result. ✓

3. 2
√
logn ∈ O(n) .

Solution. We need to show that there are constants c, n0 such that 2
√
logn ≤ c·n holds for

every n ≥ n0. Observe that the previous inequality is equivalent to 2
√
logn ≤ 2log(n)+log(c),

which holds if
√
log n ≤ log(n) + log(c). Observe that

√
x ≤ x for every x ≥ 1. Hence,√

log n ≤ log(n) holds for every log(n) ≥ 1, or every n ≥ 2. We can thus pick n0 = 2 and
c = 1 (observe that log(x) < 0 for x < 1, we therefore couldn’t choose c < 1). ✓

4 Fast Peak Finding

Consider the following variant of Fast-Peak-Finding where the “≥” sign in the condition in
instruction 4 is replaced by a “<” sign:

1. if A is of length 1 then return 0

2. if A is of length 2 then compare A[0] and A[1] and return position of larger
element

3. if A[⌊n/2⌋] is a peak then return ⌊n/2⌋

4. Otherwise, if A[⌊n/2⌋ − 1]<<< A[⌊n/2⌋] then
return Fast-Peak-Finding(A[0, ⌊n/2⌋ − 1])

5. else
return ⌊n/2⌋+ 1+ Fast-Peak-Finding(A[⌊n/2⌋+ 1, n− 1])

Give an input array of length 8 on which this algorithm fails.

Solution. Consider the instance A[i] = i, for every 0 ≤ i ≤ 7. Then the algorithm recurses
on the subarray A[0 . . . 2] in line 4. Observe however that none of the elements in A[0 . . . 2]
constitute a peak in array A. ✓

5 Optional and Difficult

5.1 Advanced Racetrack Principle

Use the racetrack principle and determine a value n0 such that

2

log n
≤ 1

log log n
holds for every n ≥ n0 .

3

Hint: Transform the inequality and eliminate the log-function from one side of the inequality
before applying the racetrack principle. If needed, apply the racetrack principle twice!
Recall that (log n)′ = 1

n ln(2) . The inequality ln(2) ≥ 1/2 may also be useful.

Solution. We use the provided “Hint” and transform the given inequality as follows:

2

log n
≤ 1

log logn

2 log log n ≤ log n

22 log logn ≤ 2logn

(log n)2 ≤ n .

We now pick n0 = 16. Then, (log 16)2 ≤ 16 holds. Next, observe that ((log n)2)′ = 2 ln(n)
(ln(2))2n

and (n)′ = 1. Using the racetrack principle, it is enough to show that 2 ln(n)
(ln(2))2n

≤ 1, for every

n ≥ n0 = 16. This is equivalent to showing that 2 ln(n) ≤ ln(2)2n (for every n ≥ 16). We now
apply the racetrack principle again: To this end, we first verify that 2 ln(n) ≤ ln(2)2n holds
for n = n0 = 16: We indeed have 2 ln(16) = 2 ln(24) = 8 ln(2) ≤ ln(2)2 · 16 (which holds since
ln(2) ≥ 1/2). Next, observe that (2 ln(n))′ = 2

n and (ln(2)2n)′ = ln(2)2. It thus remains to argue
that 2

n ≤ ln(2)2 for every n ≥ 16. The previous inequality is equivalent to 2
ln(2)2

≤ 2
(1
2
)2

≤ 8 ≤ n,

which holds for every n ≥ 16.
Hence, 2

logn ≤ 1
log logn holds for every n ≥ 16.

✓

5.2 Finding Two Peaks

We are given an integer array A of length n that has exactly two peaks. The goal is to find
both peaks. We could do this as follows: Simply go through the array with a loop and check
every array element. This strategy has a runtime of O(n) (requires c ·n array accesses, for some
constant c). Is there a faster algorithm for this problem (e.g. similar to Fast-Peak-Finding)?
If yes, give such an algorithm. If no, justify why there is no such algorithm.

4

