Exercise Sheet 1: Answers
COMS10017 Algorithms 2023/2024

Reminder: logn denotes the binary logarithm, i.e., logn = log, n.

Example Question: Big-O Notation

Question. Give a formal proof of the following statement using the definition of Big-O from
the lecture (i.e., identify positive constants ¢, ng for which the definition holds):

5v/n € O(n) .

Solution. We need to show that there are positive constants ¢, ng such that 5y/n < ¢-n holds,
for every n > ng. This is equivalent to showing that (2)? < n holds.

We choose ¢ = 5, which implies 1 < n. We can thus select ng = 1, since then 1 < n holds for
every n > ng. This prove that 5/n € O(n).

Remark: Observe that there are many other combinations of values for ¢ and ng that satisfy
the inequality we need to prove. For example, if we pick ¢ = 1 then we obtain 25 < n (which
follows from (2)? < n). In this case, we would have to choose a value for ng that is greater or
equal to 25, in particular, ng = 25 would do. v

1 O-notation: Part I

Give formal proofs of the following statements using the definition of Big-O from the lecture
(i.e., identify positive constants ¢, ng for which the definition holds):

1. n?+10n+8 € O(3n?) .

Solution. We need to show that there are positive constants ¢, ng such that n2+10n+8 <
c- %nz, for every n > ng. To make our life easier, we use the following estimate:

n? 4+ 10n 4+ 8 < n? + 10n? + 8n? = 19n? |

which holds for every n > 1. If we can prove that there are constants c,ng such that
19n% < ¢- %nQ holds for every n > ng, then these constants also work for showing that
n*+10n+8<c- %nQ for every n > nyg.

This, however, is easy: We can pick ¢ = 38 and ng = 1, which completes the proof. v

2. nd+n2+n=0(n3.



Solution. We need to show that there are constants ¢, ng such that n®> +n?+n <c-n3

holds for every n > ng. Using the idea from the previous exercise, we use the inequality
n3 +n?+n < 3n3, which holds for every n > 1, and prove instead that there are constants
¢, ng such that 3n? < en3 holds for every n > ng. Again, this is easy to do: We pick ¢ = 3
and ng = 1. v

3.10€0(1) .

Solution. We need to show that there are positive constants ¢, ng such that 10 < c¢- 1,
for every n > ng. Observe that this expression does not depend on n at all. Therefore
any positive value for ny would work, e.g., ng = 1 (or ng = 23 or any other value). We
choose ¢ = 10 which implies that 10 < ¢ -1 is satisfied. This proves that 10 € O(1). v

4. 3% i€ 0(4n?) .

Solution. First, observthhat Yiji=nn+1)/2= %2 + 5. We need to find positive
constants ¢, ng such that %+ < c-4n?, for every n > ng. We pick ng = 1. Since n < n?,
for every n > ng = 1, we will satisfy the inequality %2 + "72 < c-4n?, which is equivalent
to 1 < 4c. We can hence pick ¢ = 1 and we are done. v

2 Racetrack Principle
Use the racetrack principle to prove the following statement:

n < e" holds for every n > 1 .

Solution. First, we verify that n < e” holds for n = ng = 1. This is true, since 1 < e holds.
Next, we verify that (n)’ < (e")" holds for every n > ng. We have (n)’ =1 and (e") = e". We
thus need to show that 1 < €™ holds for every n > 1. Taking the natural logarithm on both
sides, we obtain 0 < n, which is true for every n > ng = 1. Hence, n < e” holds for every n > 1.

v

3 O-notation: Part II

Give formal proofs of the following statements using the definition of Big-O from the lecture.

1. f € O(h1),g € O(hy) then f-g € O(hy - ho) .

Solution. Similar as in the previous exercise, we know that there are constants ¢y, co, n1, no
such that f(n) < ¢ - hi(n), for every n > nq, and g(n) < ¢y - ha(n), for every n > no.
Then:

fn)-gn) <ecp-hi(n)-co-ha(n) =ciea - hi(n)ha(n)
for every n > max{ni,no}. We thus select C' = ¢; - ¢co and N = max{nj,no} and obtain
f(n)g(n) < C(hi(n)ha(n)), for every n > N. v

2. 2" € O(n!) .



Solution. To prove this statement, we will show that 2 < C - n! holds for C' = 2 and
every n > 2. To this end, observe that 2" < 2n! is equivalent to 2"~ < n!. Observe that

and

(n—1) factors, each larger equal to 2

Trading off the factors of the two expressions, we see that 2"~! < n!, which proves the
result. v

3. 2Vlsn € O(n) .

Solution. We need to show that there are constants ¢, ng such that ovIogn < . holds for
every n > ng. Observe that the previous inequality is equivalent to oViogn < 2log(n)+log(c)
which holds if v/logn < log(n) + log(c). Observe that \/x < z for every z > 1. Hence,
VIogn < log(n) holds for every log(n) > 1, or every n > 2. We can thus pick ng = 2 and
¢ =1 (observe that log(x) < 0 for < 1, we therefore couldn’t choose ¢ < 1). v

4 Fast Peak Finding

Consider the following variant of FAST-PEAK-FINDING where the “>” sign in the condition in
instruction 4 is replaced by a “<” sign:

1. if A is of length 1 then return 0

2. if A is of length 2 then compare A[0] and A[l] and return position of larger
element

3. if A[|n/2]] is a peak then return [n/2]

4. Otherwise, if A[|[n/2] — 1] < A[|n/2]] then
return FAST-PEAK-FINDING(A[0, [n/2] — 1])

5. else
return [n/2| + 1+ FAST-PEAK-FINDING(A[|n/2| + 1,n — 1])

Give an input array of length 8 on which this algorithm fails.

Solution. Consider the instance A[i] = i, for every 0 < i < 7. Then the algorithm recurses
on the subarray A[0...2] in line 4. Observe however that none of the elements in A0...2]
constitute a peak in array A. v

5 Optional and Difficult

5.1 Advanced Racetrack Principle

Use the racetrack principle and determine a value ngy such that

2

< holds for every n > ng .
logn ~ loglogn




Hint: Transform the inequality and eliminate the log-function from one side of the inequality
before applying the racetrack principle. If needed, apply the racetrack principle twice!

Recall that (logn)’ = nh}(2)‘ The inequality In(2) > 1/2 may also be useful.

Solution. We use the provided “Hint” and transform the given inequality as follows:

2 1
< -
logn — loglogn
2loglogn < logn
22 loglogn < 2logn
(logn)? < n.

We now pick ng = 16. Then, (log16)? < 16 holds. Next, observe that ((logn)?)’ = 22

(In(2))*n
and (n)" = 1. Using the racetrack principle, it is enough to show that % < 1, for every
n > ng = 16. This is equivalent to showing that 2In(n) < In(2)?n (for every n > 16). We now
apply the racetrack principle again: To this end, we first verify that 2In(n) < In(2)?n holds
for n = ng = 16: We indeed have 21n(16) = 2In(2*) = 81n(2) < In(2)? - 16 (which holds since
In(2) > 1/2). Next, observe that (2In(n))’ = 2 and (In(2)?n)’ = In(2)%. It thus remains to argue

that % < In(2)? for every n > 16. The previous inequality is equivalent to 2 < % <8<n,

In(2)2 — (%)
which holds for every n > 16.

2 1
Hence, oan < Toglogn holds for every n > 16.

5.2 Finding Two Peaks

We are given an integer array A of length n that has exactly two peaks. The goal is to find
both peaks. We could do this as follows: Simply go through the array with a loop and check
every array element. This strategy has a runtime of O(n) (requires c¢-n array accesses, for some
constant ¢). Is there a faster algorithm for this problem (e.g. similar to FAST-PEAK-FINDING)?
If yes, give such an algorithm. If no, justify why there is no such algorithm.



