## Exercise Sheet 1 COMS10017 Algorithms 2023/2024

Reminder: $\log n$ denotes the binary $\operatorname{logarithm}$, i.e., $\log n=\log _{2} n$.

## Example Question: Big-O Notation

Question. Give a formal proof of the following statement using the definition of Big-O from the lecture (i.e., identify positive constants $c, n_{0}$ for which the definition holds):

$$
5 \sqrt{n} \in O(n) .
$$

Solution. We need to show that there are positive constants $c, n_{0}$ such that $5 \sqrt{n} \leq c \cdot n$ holds, for every $n \geq n_{0}$. This is equivalent to showing that $\left(\frac{5}{c}\right)^{2} \leq n$ holds.
We choose $c=5$, which implies $1 \leq n$. We can thus select $n_{0}=1$, since then $1 \leq n$ holds for every $n \geq n_{0}$. This prove that $5 \sqrt{n} \in O(n)$.

Remark: Observe that there are many other combinations of values for $c$ and $n_{0}$ that satisfy the inequality we need to prove. For example, if we pick $c=1$ then we obtain $25 \leq n$ (which follows from $\left(\frac{5}{c}\right)^{2} \leq n$ ). In this case, we would have to choose a value for $n_{0}$ that is greater or equal to 25 , in particular, $n_{0}=25$ would do.

## 1 O-notation: Part I

Give formal proofs of the following statements using the definition of Big-O from the lecture (i.e., identify positive constants $c, n_{0}$ for which the definition holds):

1. $n^{2}+10 n+8 \in O\left(\frac{1}{2} n^{2}\right)$.
2. $n^{3}+n^{2}+n=O\left(n^{3}\right)$.
3. $10 \in O(1)$.
4. $\sum_{i=1}^{n} i \in O\left(4 n^{2}\right)$.

## 2 Racetrack Principle

Use the racetrack principle to prove the following statement:

$$
n \leq e^{n} \text { holds for every } n \geq 1
$$

## 3 O-notation: Part II

Give formal proofs of the following statements using the definition of Big-O from the lecture.

1. $f \in O\left(h_{1}\right), g \in O\left(h_{2}\right)$ then $f \cdot g \in O\left(h_{1} \cdot h_{2}\right)$.
2. $2^{n} \in O(n!)$.
3. $2^{\sqrt{\log n}} \in O(n)$.

## 4 Fast Peak Finding

Consider the following variant of Fast-Peak-Finding where the " 2 " sign in the condition in instruction 4 is replaced by a " $<$ " sign:

1. if $A$ is of length 1 then return 0
2. if $A$ is of length 2 then compare $A[0]$ and $A[1]$ and return position of larger element
3. if $A[\lfloor n / 2\rfloor\rfloor$ is a peak then return $\lfloor n / 2\rfloor$
4. Otherwise, if $A[\lfloor n / 2\rfloor-1]<A[\lfloor n / 2\rfloor]$ then
return $\operatorname{Fast-Peak-Finding}(A[0,\lfloor n / 2\rfloor-1])$
5. else
return $\lfloor n / 2\rfloor+1+$ Fast-Peak-Finding $(A[\lfloor n / 2\rfloor+1, n-1])$
Give an input array of length 8 on which this algorithm fails.

## 5 Optional and Difficult

Exercises in this section are intentionally more difficult and are there to challenge yourself.

### 5.1 Advanced Racetrack Principle

Use the racetrack principle and determine a value $n_{0}$ such that

$$
\frac{2}{\log n} \leq \frac{1}{\log \log n} \text { holds for every } n \geq n_{0} .
$$

Hint: Transform the inequality and eliminate the log-function from one side of the inequality before applying the racetrack principle. If needed, apply the racetrack principle twice!
Recall that $(\log n)^{\prime}=\frac{1}{n \ln (2)}$. The inequality $\ln (2) \geq 1 / 2$ may also be useful.

### 5.2 Finding Two Peaks

We are given an integer array $A$ of length $n$ that has exactly two peaks. The goal is to find both peaks. We could do this as follows: Simply go through the array with a loop and check every array element. This strategy has a runtime of $O(n)$ (requires $c \cdot n$ array accesses, for some constant $c$ ). Is there a faster algorithm for this problem (e.g. similar to Fast-Peak-Finding)? If yes, give such an algorithm. If no, justify why there is no such algorithm.

