
Exercise Sheet 2: Answers

COMS10017 Algorithms 2023/2024

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

Example Question: Runtime Analysis

Question. What is the runtime of the following algorithm in big-O-notation:

Algorithm 1
Require: Integer n ≥ 1
1: x← 0
2: for i = 1 . . . n do
3: for j = i . . . n do
4: x← x+ i · j
5: end for
6: end for
7: return x

Solution. We need to sum up the runtimes of all the instructions of Algorithm 1. We account
a runtime of O(1) for each of the instructions in Lines 1,4,7, however, the two nested loops make
Line 4 being executed multiple times. The runtime of the two nested loops, which dominates
the overall runtime of the algorithm, can be computed as follows:

n∑
i=1

n∑
j=i

O(1) = O

 n∑
i=1

n∑
j=i

1

 = O

(
n∑

i=1

n− i+ 1

)
= O

(
n∑

i=1

(n+ 1)−
n∑

i=1

i

)

= O

(
n(n+ 1)− n(n+ 1)

2

)
= O

(
n(n+ 1)

2

)
= O(

1

2
n2 +

1

2
n) = O(n2) .

The runtime of Algorithm 1 is therefore O(n2).

Remark: In the previous calculation, we used the simplification
∑n

j=i 1 = n − i + 1. Observe
that j takes on the values {i, i + 1, . . . , n}, and, for each value, we have a contribution of 1 to
the overall sum. Since |{i, i + 1, . . . , n}| = n − i + 1, i.e., j takes on n − i + 1 different values,

we obtain the result. We also used the identity
∑n

i=1 i =
n(n+1)

2 , which is an important identity
that you should remember. In the last step, we used a lemma discussed in the lecture that
states that a polynomial in n with constant maximum degree k is in O(nk). ✓

1 Θ and Ω

1. Prove that the following two statements are equivalent:

1

(a) f ∈ Θ(g) .

(b) f ∈ O(g) and g ∈ O(f) .

Solution. In order to prove that two statements are equivalent, we assume first
that the first statement holds and we deduce that the second statement then holds
as well. Then we assume that the second statement holds and we deduce that the
first statement then holds as well.

Let’s first assume that f ∈ Θ(g). This means that there are constants c1, c2, n0 such
that c1g(n) ≤ f(n) ≤ c2g(n), for every n ≥ n0.

To show that f ∈ O(g), we need to show that there are constants c, n′
0 such that

f(n) ≤ cg(n), for every n ≥ n′
0. This follows immediately by choosing c = c2 and

n′
0 = n0 as above.

To show that g ∈ O(f), we need to show that there are constants c, n′
0 such that

g(n) ≤ cf(n), for every n ≥ n′
0. This follows immediately by choosing c = 1

c1
and

n ≥ n′
0.

Next, we assume that f ∈ O(g) and g ∈ O(f). This implies that there are constants
c1, n1 such that f(n) ≤ c1g(n), for every n ≥ n1, and constants c2, n2 such that
g(n) ≤ c2f(n), for every n ≥ n2. We need to show that there are constants d1, d2, n0

such that d1g(n) ≤ f(n) ≤ d2g(n), for every n ≥ n0. We can chose d2 = c1, d1 =
1
c2
,

and n0 ≥ max{n1, n2}. ✓

2. Prove that the following two statements are equivalent:

(a) f ∈ Ω(g) .

(b) g ∈ O(f) .

Solution. Let’s first assume that f ∈ Ω(g). This means that there are constants c1, n1

such that c1g(n) ≤ f(n), for every n ≥ n1. We need to show that there are constants
c2, n2 such that g(n) ≤ c2f(n), for every n ≥ n2. We can pick c2 =

1
c1

and n2 = n1.

The reverse direction, i.e., assuming that g ∈ O(f) and deducing that f ∈ Ω(g) is very
similar. ✓

3. Let c > 1 be a constant. Prove or disprove the following statements:

(a) logc n ∈ Θ(log n).

Solution. Recall the definition of Θ: A function f(n) ∈ Θ(g(n)) if there are con-
stants c1, c2, n0 such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n), for every n ≥ n0. Hence, we
need to find constants c1, c2, n0 such that

c1 log n ≤ logc n ≤ c2 log n ,

for every n ≥ n0. Observe that logc n = logn
log c . We can hence chose c1 = c2 = 1

log c
and n0 = 1, since c1 · log n = c2 · log n = logc n. This clearly holds for every n ≥ 1. ✓

(b) log(nc) ∈ Θ(log n).

2

Solution. Again, we need to find constants c1, c2, n0 such that

c1 log n ≤ log(nc) ≤ c2 log n ,

for every n ≥ n0. Observe that log(nc) = c log n. We can hence chose c1 = c2 = c
and n0 = 1. ✓

4. Let c > 2 be a constant. Prove or disprove the following statement:

2n ∈ Θ(cn) .

Solution. This statement is wrong. We will show that cn /∈ O(2n). This disproves this
statement since if f ∈ Θ(g) then g ∈ O(f) as well.

For the sake of a contradiction, suppose that cn ∈ O(2n). Then there are constants d, n0

such that
cn ≤ d · 2n ,

for every n ≥ n0. Taking logarithms on both sides, we obtain the equivalent inequality:

n log(c) ≤ log(d2n) = log(d) + n

n ≤ log(d)

log(c)− 1
.

Observe that we only obtain the last inequality since c > 2 (since c > 2 we also have

log c > 1 and log(c)− 1 > 0). This inequality hence does not hold for every n > log(d)
log(c)−1 .

This is a contradiction to the assumption that it holds for every n ≥ n0. ✓

2 O-notation

1. Consider the following functions:

f1 = 2
√
n, f2 = log2(20n), f3 = n!, f4 =

1

2
n2/ log(n), f5 = 4 log2(n), f6 = 2

√
logn .

Relabel the functions such that fi ∈ O(fi+1) (no need to give any proofs here).

Solution.

O(log2(20n)) ⊆ O(4 log2(n)) ⊆ O(2
√
logn) ⊆ O(

1

2
n2/ log(n)) ⊆ O(2

√
n) ⊆ O(n!)

Observe that log2(20n) = Θ(4 log2(n)). We could therefore also swap the positions of the
first two functions. ✓

2. Give functions f, g such that f(n) ∈ O(g(n)) and 2f(n) /∈ O(2g(n)).

Solution. Consider for example f(n) = log n and g(n) = 1
2 log n. Then clearly f(n) =

O(g(n)), but 2f(n) /∈ 2g(n), since 2f(n) = 2logn = n and 2g(n) = 2
1
2
logn = n

1
2 =
√
n, and

n /∈ O(
√
n). ✓

3

3 Runtime Analysis

Algorithm 2
Require: Int n ≥ 1
1: x← 0
2: for i = 1 . . . n do
3: for j = 1 . . . n do
4: for k = 1 . . . n do
5: x← x+ i · j
6: end for
7: end for
8: end for
9: return x

Algorithm 3
Require: Int n ≥ 1
1: x← 0
2: i← 1
3: while i ≤ n do
4: for j = 1 . . . n do
5: x← x+ i · j
6: end for
7: i← 2 · i
8: end while
9: return x

Algorithm 4
Require: Int n ≥ 1
1: x← 0
2: i← 1
3: while i ≤ n do
4: for j = 1 . . . i do
5: x← x+ i · j
6: end for
7: i← 2 · i
8: end while
9: return x

Determine the runtimes of Algorithms 2, 3, and 4 using big-O-notation.

Solution.

1. Algorithm 1 runs in time Θ(n3) (three nested loops, each going from 1 to n).

2. Observe that the inner loop in Algorithm 3 always requires Θ(n) time in total. It remains
to determine how often the outer loop is executed. To this end, for j ≥ 1, let ij be the
value of i at the beginning of iteration j. Then, i1 = 1, and ij = 2 · ij−1 = 4 · ij−2 =
· · · = 2j−1. Let k be the last iteration of the loop. Then, 2k−1 ≤ n and 2k > n. We have
2k > n ⇒ k > log n, and similarly we get k − 1 ≤ log n, which implies k ≤ log(n) + 1.
We thus have the conditions: log n < k < log(n) + 1, and since k is an integer, we obtain
k = ⌊log(n)+ 1⌋. Hence, the outer loop is executed ⌊log(n)+ 1⌋ times. The total runtime
is therefore Θ(n log n).

3. Observe that in Algorithm 4 the inner loop runs in time Θ(i). As demonstrated in the
previous exercise, the outer loop is executed ⌊log(n) + 1⌋ times and the variable i takes
on values 1, 2, 4, 8, . . . , 2⌊log(n)+1⌋−1. We can thus bound the runtime as follows:

Θ

⌊log(n)+1⌋−1∑
j=1

2j

 = Θ(2⌊log(n)+1⌋) = Θ(n).

✓

4 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

4.1 Peak Finding in 2D (hard!)

Let A be an n-by-n matrix of integers, for some integer n. We say that Ai,j is a peak if the
adjacent elements Ai−1,j , Ai+1,j , Ai,j−1, Ai,j+1 are not larger than Ai,j . The objective is to find
a peak in A. Similar to the peak finding problem discussed in the lecture, reporting any peak
is fine, in particular, it is not required that we find the maximum in A or that we report all the
peaks in A.

4

Consider the following baseline algorithm: We scan the entire matrix and check whether
every element Ai,j , for i, j ∈ {0, 1, 2, . . . , n− 1}, is a peak. This strategy requires a runtime of
O(n2). Is there a faster algorithm?

Please send your ideas to christian.konrad@bristol.ac.uk. I am keen to hear if you
found a solution!

5

