
Exercise Sheet 2

COMS10017 Algorithms 2023/2024

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

Example Question: Runtime Analysis

Question. What is the runtime of the following algorithm in big-O-notation:

Algorithm 1
Require: Integer n ≥ 1
1: x← 0
2: for i = 1 . . . n do
3: for j = i . . . n do
4: x← x+ i · j
5: end for
6: end for
7: return x

Solution. We need to sum up the runtimes of all the instructions of Algorithm 1. We account
a runtime of O(1) for each of the instructions in Lines 1,4,7, however, the two nested loops make
Line 4 being executed multiple times. The runtime of the two nested loops, which dominates
the overall runtime of the algorithm, can be computed as follows:

n∑
i=1

n∑
j=i

O(1) = O

 n∑
i=1

n∑
j=i

1

 = O

(
n∑

i=1

n− i+ 1

)
= O

(
n∑

i=1

(n+ 1)−
n∑

i=1

i

)

= O

(
n(n+ 1)− n(n+ 1)

2

)
= O

(
n(n+ 1)

2

)
= O(

1

2
n2 +

1

2
n) = O(n2) .

The runtime of Algorithm 1 is therefore O(n2).

Remark: In the previous calculation, we used the simplification
∑n

j=i 1 = n − i + 1. Observe
that j takes on the values {i, i + 1, . . . , n}, and, for each value, we have a contribution of 1 to
the overall sum. Since |{i, i + 1, . . . , n}| = n − i + 1, i.e., j takes on n − i + 1 different values,

we obtain the result. We also used the identity
∑n

i=1 i =
n(n+1)

2 , which is an important identity
that you should remember. In the last step, we used a lemma discussed in the lecture that
states that a polynomial in n with constant maximum degree k is in O(nk). ✓

1 Θ and Ω

1. Prove that the following two statements are equivalent:

1

(a) f ∈ Θ(g) .

(b) f ∈ O(g) and g ∈ O(f) .

2. Prove that the following two statements are equivalent:

(a) f ∈ Ω(g) .

(b) g ∈ O(f) .

3. Let c > 1 be a constant. Prove or disprove the following statements:

(a) logc n ∈ Θ(log n).

(b) log(nc) ∈ Θ(log n).

4. Let c > 2 be a constant. Prove or disprove the following statement:

2n ∈ Θ(cn) .

2 O-notation

1. Consider the following functions:

f1 = 2
√
n, f2 = log2(20n), f3 = n!, f4 =

1

2
n2/ log(n), f5 = 4 log2(n), f6 = 2

√
logn .

Relabel the functions such that fi ∈ O(fi+1) (no need to give any proofs here).

2. Give functions f, g such that f(n) ∈ O(g(n)) and 2f(n) /∈ O(2g(n)).

3 Runtime Analysis

Algorithm 2
Require: Int n ≥ 1
1: x← 0
2: for i = 1 . . . n do
3: for j = 1 . . . n do
4: for k = 1 . . . n do
5: x← x+ i · j
6: end for
7: end for
8: end for
9: return x

Algorithm 3
Require: Int n ≥ 1
1: x← 0
2: i← 1
3: while i ≤ n do
4: for j = 1 . . . n do
5: x← x+ i · j
6: end for
7: i← 2 · i
8: end while
9: return x

Algorithm 4
Require: Int n ≥ 1
1: x← 0
2: i← 1
3: while i ≤ n do
4: for j = 1 . . . i do
5: x← x+ i · j
6: end for
7: i← 2 · i
8: end while
9: return x

Determine the runtimes of Algorithms 2, 3, and 4 using big-O-notation.

4 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

2

4.1 Peak Finding in 2D (hard!)

Let A be an n-by-n matrix of integers, for some integer n. We say that Ai,j is a peak if the
adjacent elements Ai−1,j , Ai+1,j , Ai,j−1, Ai,j+1 are not larger than Ai,j . The objective is to find
a peak in A. Similar to the peak finding problem discussed in the lecture, reporting any peak
is fine, in particular, it is not required that we find the maximum in A or that we report all the
peaks in A.

Consider the following baseline algorithm: We scan the entire matrix and check whether
every element Ai,j , for i, j ∈ {0, 1, 2, . . . , n− 1}, is a peak. This strategy requires a runtime of
O(n2). Is there a faster algorithm?

Please send your ideas to christian.konrad@bristol.ac.uk. I am keen to hear if you
found a solution!

3

