Exercise Sheet 2
 COMS10017 Algorithms 2023/2024

Reminder: $\log n$ denotes the binary $\operatorname{logarithm}$, i.e., $\log n=\log _{2} n$.

Example Question: Runtime Analysis

Question. What is the runtime of the following algorithm in big-O-notation:

```
Algorithm 1
Require: Integer \(n \geq 1\)
    \(x \leftarrow 0\)
    for \(i=1 \ldots n\) do
        for \(j=i \ldots n\) do
            \(x \leftarrow x+i \cdot j\)
        end for
    end for
    return \(x\)
```

Solution. We need to sum up the runtimes of all the instructions of Algorithm 1. We account a runtime of $O(1)$ for each of the instructions in Lines $1,4,7$, however, the two nested loops make Line 4 being executed multiple times. The runtime of the two nested loops, which dominates the overall runtime of the algorithm, can be computed as follows:

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=i}^{n} O(1) & =O\left(\sum_{i=1}^{n} \sum_{j=i}^{n} 1\right)=O\left(\sum_{i=1}^{n} n-i+1\right)=O\left(\sum_{i=1}^{n}(n+1)-\sum_{i=1}^{n} i\right) \\
& =O\left(n(n+1)-\frac{n(n+1)}{2}\right)=O\left(\frac{n(n+1)}{2}\right)=O\left(\frac{1}{2} n^{2}+\frac{1}{2} n\right)=O\left(n^{2}\right)
\end{aligned}
$$

The runtime of Algorithm 1 is therefore $O\left(n^{2}\right)$.
Remark: In the previous calculation, we used the simplification $\sum_{j=i}^{n} 1=n-i+1$. Observe that j takes on the values $\{i, i+1, \ldots, n\}$, and, for each value, we have a contribution of 1 to the overall sum. Since $|\{i, i+1, \ldots, n\}|=n-i+1$, i.e., j takes on $n-i+1$ different values, we obtain the result. We also used the identity $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$, which is an important identity that you should remember. In the last step, we used a lemma discussed in the lecture that states that a polynomial in n with constant maximum degree k is in $O\left(n^{k}\right)$.

1Θ and Ω

1. Prove that the following two statements are equivalent:
(a) $f \in \Theta(g)$.
(b) $f \in O(g)$ and $g \in O(f)$.
2. Prove that the following two statements are equivalent:
(a) $f \in \Omega(g)$.
(b) $g \in O(f)$.
3. Let $c>1$ be a constant. Prove or disprove the following statements:
(a) $\log _{c} n \in \Theta(\log n)$.
(b) $\log \left(n^{c}\right) \in \Theta(\log n)$.
4. Let $c>2$ be a constant. Prove or disprove the following statement:

$$
2^{n} \in \Theta\left(c^{n}\right) .
$$

2 O-notation

1. Consider the following functions:

$$
f_{1}=2^{\sqrt{n}}, f_{2}=\log ^{2}(20 n), f_{3}=n!, f_{4}=\frac{1}{2} n^{2} / \log (n), f_{5}=4 \log ^{2}(n), f_{6}=2^{\sqrt{\log n}} .
$$

Relabel the functions such that $f_{i} \in O\left(f_{i+1}\right)$ (no need to give any proofs here).
2. Give functions f, g such that $f(n) \in O(g(n))$ and $2^{f(n)} \notin O\left(2^{g(n)}\right)$.

3 Runtime Analysis

```
Algorithm 2
Require: Int \(n \geq 1\)
    \(x \leftarrow 0\)
    for \(i=1 \ldots n\) do
        for \(j=1 \ldots n\) do
            for \(k=1 \ldots n\) do
                \(x \leftarrow x+i \cdot j\)
            end for
        end for
    end for
    return \(x\)
```

```
\(\overline{\text { Algorithm 3 }}\)
    \(x \leftarrow 0\)
    \(i \leftarrow 1\)
    while \(i \leq n\) do
        for \(j=1 \ldots n\) do
            \(x \leftarrow x+i \cdot j\)
        end for
        \(i \leftarrow 2 \cdot i\)
    end while
    return \(x\)
```

```
Algorithm 4
Require: Int \(n \geq 1\)
    \(x \leftarrow 0\)
    \(i \leftarrow 1\)
    while \(i \leq n\) do
        for \(j=1 \ldots i\) do
            \(x \leftarrow x+i \cdot j\)
        end for
        \(i \leftarrow 2 \cdot i\)
    end while
    return \(x\)
```

Determine the runtimes of Algorithms 2, 3, and 4 using big-O-notation.

4 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

4.1 Peak Finding in 2D (hard!)

Let A be an n-by- n matrix of integers, for some integer n. We say that $A_{i, j}$ is a peak if the adjacent elements $A_{i-1, j}, A_{i+1, j}, A_{i, j-1}, A_{i, j+1}$ are not larger than $A_{i, j}$. The objective is to find a peak in A. Similar to the peak finding problem discussed in the lecture, reporting any peak is fine, in particular, it is not required that we find the maximum in A or that we report all the peaks in A.

Consider the following baseline algorithm: We scan the entire matrix and check whether every element $A_{i, j}$, for $i, j \in\{0,1,2, \ldots, n-1\}$, is a peak. This strategy requires a runtime of $O\left(n^{2}\right)$. Is there a faster algorithm?

Please send your ideas to christian.konrad@bristol.ac.uk. I am keen to hear if you found a solution!

