Exercise Sheet 3: Answers
COMS10017 Algorithms 2023/2024

Reminder: logn denotes the binary logarithm, i.e., logn = log, n.

Example Question: Loop Invariants

Question. Prove that the stated invariant holds throughout the execution of the loop (using
the Initialization, Maintenance, Termination approach discussed in the lectures):

Algorithm 1
Require: Array A of length n (n > 2)

1. S+ AJ0] — A[1]

2: fori<1...n—2do

3: S%S—i—AM—A[i%—l]
4: end for

5: return S

Invariant:
At the beginning of iteration 4, the statement S = A[0] — A[i] holds.

Which value is returned by the algorithm (use the Terminiation property for this)?

Solution. Let S5; be the value of S at the beginning of iteration i.

1. Initialization (i = 1): We need to show that the statement of the loop invariant holds for
i =1, i.e., the statement S; = A[0] — A[1] holds before iteration ¢ = 1. Observe that, in
Line 1, S; is initialized as S; <= A[0] — A[1]. The loop invariant thus holds for i = 1.

2. Maintenance: Assume that the loop invariant holds for value i, i.e., S; = A[0] — A[i].
We need to show that the loop invariant then also holds for value ¢ + 1, i.e., we need
to show that S;;1 = A[0] — A[¢ + 1] holds. To this end, observe that in iteration i we
execute the operation S;11 = S; + Afi] — A[i + 1]. Since S; = A[0] — A[i], we obtain
Siy1 = A[0] — A[i] + A[i] — A[i + 1] = AJ0] — A[i + 1].

3. Termination: We have that, after the last iteration (or before the (n — 1)th iteration that
is never executed), Sp,—1 = A[0] — A[n — 1] holds. The algorithm thus returns the value
Al0] — Aln — 1]

v

1 Warm up: Proof by Induction

Consider the following sequence: s; = 1,890 = 2,53 = 3, and s, = Sp,—1 + Sp—2 + Sn—3, for every
n > 4. Prove that the following holds:
Sp <27,
Solution.
Base cases: We need to verify that the statement holds for n € {1,2,3}, since s,, depends
on Sp_1,8p—2, and s,_3 (in particular, s, depends on s3, s, s1). This is easy to verify: s; =
1<2Y 50 =2<2% and s3 =3 <23,

Induction Hypothesis: We complete the proof using strong induction. The induction
hypothesis is therefore as follows: For every n’ < n the statement s,y < 2" holds.

Induction Step: We need to show that the statement also holds for n + 1:

Spil = Sn F Sp_1 4+ Spo < 2T 420 ponT2 —on=2(4 L 9 1) < onm2.g = ontl

2 Loop Invariant

Prove that the stated loop invariant holds throughout the execution of the loop (using the
Initialization, Maintenance, Termination approach discussed in the lectures):

Algorithm 2

Require: Array A of n positive integers
: B < empty array of n integers
B[0] «+ A0
:fori=1...n—1do
if A[i] > B[i — 1] then
Bli] «+ Ali
else
Bli] + BJi — 1]
end if
end for
return Bn — 1]

—_
e

Loop Invariant: At the beginning of iteration ¢, the following statement holds: For every
0 < j <i: BJj] is the maximum of the subarray A[0, j], i.e., B[j] = max{A[0],..., A[j]}.
Which value is returned by the algorithm (use the Terminiation property for this)?

Hint: The Maintenance part requires a case distinction in order to deal with the if-else
statement.
Solution.

e Initialization: We need to show that the loop invariant holds for ¢ = 1. For i = 1, the
loop invariant translates to “At the beginning of iteration ¢ = 1, the following holds: For
every 0 < j < 1 (which implies that j only takes on the value 0), B[0] is the maximum

of the subarray A[0]”. This is trivially true since, in Line 2 of the algorithm, we have
B[0] = A[0] and, hence, B[0] is also the maximum of {A[0]}.

e Maintenance: We now assume that the loop invariant holds for iteration ¢, i.e., we have
B[j] = max{A[0], A[1], ..., A[j]}, for every 0 < j < i, and we need to deduce that the loop
invariant then also holds for iteration ¢ + 1. Observe that in iteration ¢, only the value
of BJi] is updated. Hence, by induction, the statement of the loop-invariant is already
trivially true for every 0 < j < i, and we only need to consider the remaining case j = 1.

To this end, we conduct a case distinction that reflects the if-else statement in the algo-
rithm.

— First, assume that A[i] > B[i — 1] holds. By induction, we know that the statement
Bli—1] = max{A[0],..., A[i — 1]} holds, which, together with the assumption A[i] >
Bl[i — 1] implies A[i] = max{A[0],..., A[{]}. In Line 5, we compute BJ[i| < A[i], and,
thus, B[i] = max{A[0],..., A[i]} holds, which implies the loop invariant for i + 1.

— Next, suppose that A[i] < B[i — 1] is true. Again, by induction, we know that
the statement B[i — 1] = max{A[0],...,A[i — 1]} holds, which, together with the
assumption A[i] < B[i— 1] implies B[i —1] = max{A[0], ..., A[i —1], A[i]}. In Line 7,
we compute B[i] < B[i — 1], and, thus, B[i] = max{A[0],..., A[i — 1], A[{]} holds,
which implies the loop invariant for ¢ + 1.

e Termination: We evaluate the loop-invariant for ¢ = n, which corresponds to the state
of the algorithm after iteration ¢ = n — 1 (or before a virtual iteration i = n that is never
executed). We obtain that B[j] is the maximum of A[0, j], and, in particular, B[n — 1] is
the maximum of A. The algorithm thus returns the maximum of the elements in A.

v

3 Insertionsort

What is the runtime (in ©-notation) of Insertionsort when executed on the following arrays of
lengths n:

1. 1,2,3,4,....,n—1,n

Solution. The runtime is ©(n) since the inner loop of Insertionsort always requires time
©(1) on this instance (no moves are needed). v

2.nn—1,n—-2,...,2,1

Solution. The runtime is ©(n?). An easy way to see this is as follows: Consider the last
n/2 elements of the input array. Each of these elements is moved at least n/2 positions
to the left, i.e., the inner loop requires time ©(n) for each of these elements. The total
runtime is therefore Q(% - 2) = Q(n?). Since the runtime of Insertionsort is O(n?) on any
instance, the runtime has to be ©(n?). v

3. The array A such that A[{] = 1if i € {1,2,4,8,16,...} (i.e., when 7 is a power of two)
and A[i] = i otherwise.

Solution. Observe that Insertionsort does not move any of the elements (i.e., executes
the inner loop) that are outside the positions i € {1,2,4,8,16,...}. We thus only need
to count the number of iterations of the inner loop for these positions. Observe further
that the element at position 27, for some integer j, is moved at most 27 steps to the
left. Furthermore, we have that 2M°8nl > 2logm — 5 Hence, there are at most [logn]
positions in A with value 1. The total number of iterations the inner loop of Insertionsort
is executed is therefore at most:

[log n]
Z 9J — (logn]—i—l —1< 210gn+2 —1=4n—-1= @(n) .

Here we used the inequality [logn] < log(n) + 1, and the formula Z?:o 27 = ok+1 1,

The runtime therefore is O(n). However, since our aim is give the runtime in © notation,
we still need to argue that Insertionsort cannot be faster than ©(n). This, however, we
already know: As discussed in the lectures, the best-case runtime of Insertionsort is O(n).
Hence, Insertionsort on array A has a runtime of ©(n). v

. The array B such that B[i] =1 if ¢ € {10,20,30,40...} (i.e., when 7 is a multiple of 10)
and Bli] = i otherwise.

Solution. Similar as in the previous exercise, only the elements at positions i that are
a multiple of 10 are moved, and such an element is moved at most ¢ steps. It is also
important to note that each such element is moved at least i/2 steps. Hence, the runtime
can be bounded from above by:

125

> i-ZlO]-lOZ—lO TIJH)L%I

1=10,20,30,...(i<n—1) j=1

g1o-<+21)01:@((n—1)2+(n—1)):@(n2).

Similarly, the runtime can be bounded from below by:

Z i/2=---=0(n?),
i=10,20,30,...(i<n—1)
where the calculation is almost identical to the previous calculation. Since the runtime is

bounded from above and from below by ©(n?), the runtime therefore is ©(n?). v

. The array C such that C[i| =11if i € {n%, 2.n10,3 . nio, .. .} (i-e., when ¢ is a multiple
of n%) and C[i] =i otherwise. We assume here that nio is an integer.

Solution. O(n 10) The approach is identical to the previous exercise, but the maths is
slightly different. v

4 Runtime Analysis

Algorithm 3
Require: Integer n > 2
x+ 0
14N
while 7 > 2 do
j o [n'/4 -0
while j > i do
r—x+1
j+7—10
end while
i< [i/y/n]
end while
return z

Determine the runtime of Algorithm 3 in ©-notation.

Solution. Let us first determine the number of times x the inner loop is executed. The value
of j evolves as follows:

Y4 i, Tnb4 i — 10, [n/4] i — 20, ...

until it reaches a value that is smaller than i. We thus have [n'/4]-i — x - 10 < i which yields
%&—1)@ < z and thus implies z = ©(n'/%3).

Next, concerning the outer loop, we see that the parameter i evolves as follows (disregarding
the floor operation): n,n/\/n = \/n,1. In fact, the iteration with ¢ = 1 is never executed. The
inner loop is thus executed only twice. The overall runtime therefore is:

O(n**n) + 0 (n'*y/n)+ = O(n°*)

i.e., the runtime is dominated by the first iteration of the outer loop. v

5 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

5.1 Proof by Induction

Let n be a positive number that is divisible by 23, i.e., n = k - 23, for some interger k£ > 1. Let
x = |n/10] and let y = n % 10 (the rest of an integer division). Prove by induction on k that
23 divides = + Ty.

Example: Consider Kk = 4. Then n = 92, = 9 and y = 2. Observe that the quantity
x4+ Ty =9+ 7-2 =23 is divisible by 23.

Solution. We prove the statement by induction over k. To this end, let x; be the value of x
when n = i - 23, and similarly, let y; be the value of y when n = - 23.

Base case: (k=1)
In this case, n = 1-23, x1 = 2 and y; = 3. The quantity x; + 7y; = 23, which is divisible by
23. v

Induction Hypothesis: Suppose that x; 4+ 7y; is divisible by 23.

Induction Step: We will show that x;+1 + 7y;11 is also divisible by 23. We conduct a case
distinction:

e Suppose that y; < 6. Then y;11 = y; + 3 and x;4.1 = x; + 2. We obtain:
Tig1 +Tyir1 =2 +2+T(y +3) =2 + Ty; +2+21 = 2; + Ty; + 23 .

Since x; + Ty; is divisible by 23 and 23 is of course divisible by 23, we have x;11 4+ 7Ty;11
is divisible by 23.

e Suppose that y; > 6. Then, y;11 =y; — 7 and x;4.1 = z; + 3. We obtain:
xi+1+7yi+1 :xi+3+7(yi—7) :xi+7yi+3—49:a:i+7yi—46 .

Again, since x; 4+ Ty; is divisible by 23 and 46 is divisible by 23, we have x;11 + Ty;11 is
divisible by 23.

