
Exercise Sheet 3: Answers

COMS10017 Algorithms 2023/2024

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

Example Question: Loop Invariants

Question. Prove that the stated invariant holds throughout the execution of the loop (using
the Initialization, Maintenance, Termination approach discussed in the lectures):

Algorithm 1

Require: Array A of length n (n ≥ 2)
1: S ← A[0]−A[1]
2: for i← 1 . . . n− 2 do
3: S ← S +A[i]−A[i+ 1]
4: end for
5: return S

Invariant:

At the beginning of iteration i, the statement S = A[0]−A[i] holds.

Which value is returned by the algorithm (use the Terminiation property for this)?

Solution. Let Si be the value of S at the beginning of iteration i.

1. Initialization (i = 1): We need to show that the statement of the loop invariant holds for
i = 1, i.e., the statement S1 = A[0] − A[1] holds before iteration i = 1. Observe that, in
Line 1, S1 is initialized as S1 ← A[0]−A[1]. The loop invariant thus holds for i = 1.

2. Maintenance: Assume that the loop invariant holds for value i, i.e., Si = A[0] − A[i].
We need to show that the loop invariant then also holds for value i + 1, i.e., we need
to show that Si+1 = A[0] − A[i + 1] holds. To this end, observe that in iteration i we
execute the operation Si+1 = Si + A[i] − A[i + 1]. Since Si = A[0] − A[i], we obtain
Si+1 = A[0]−A[i] +A[i]−A[i+ 1] = A[0]−A[i+ 1].

3. Termination: We have that, after the last iteration (or before the (n− 1)th iteration that
is never executed), Sn−1 = A[0] − A[n − 1] holds. The algorithm thus returns the value
A[0]−A[n− 1].

✓

1



1 Warm up: Proof by Induction

Consider the following sequence: s1 = 1, s2 = 2, s3 = 3, and sn = sn−1 + sn−2 + sn−3, for every
n ≥ 4. Prove that the following holds:

sn ≤ 2n .

Solution.
Base cases: We need to verify that the statement holds for n ∈ {1, 2, 3}, since sn depends

on sn−1, sn−2, and sn−3 (in particular, s4 depends on s3, s2, s1). This is easy to verify: s1 =
1 ≤ 21, s2 = 2 ≤ 22 and s3 = 3 ≤ 23.

Induction Hypothesis: We complete the proof using strong induction. The induction
hypothesis is therefore as follows: For every n′ ≤ n the statement sn′ ≤ 2n

′
holds.

Induction Step: We need to show that the statement also holds for n+ 1:

sn+1 = sn + sn−1 + sn−2 ≤ 2n + 2n−1 + 2n−2 = 2n−2(4 + 2 + 1) ≤ 2n−2 · 8 = 2n+1 .

✓

2 Loop Invariant

Prove that the stated loop invariant holds throughout the execution of the loop (using the
Initialization, Maintenance, Termination approach discussed in the lectures):

Algorithm 2
Require: Array A of n positive integers
1: B ← empty array of n integers
2: B[0]← A[0]
3: for i = 1 . . . n− 1 do
4: if A[i] > B[i− 1] then
5: B[i]← A[i]
6: else
7: B[i]← B[i− 1]
8: end if
9: end for

10: return B[n− 1]

Loop Invariant: At the beginning of iteration i, the following statement holds: For every
0 ≤ j < i: B[j] is the maximum of the subarray A[0, j], i.e., B[j] = max{A[0], . . . , A[j]}.

Which value is returned by the algorithm (use the Terminiation property for this)?

Hint: The Maintenance part requires a case distinction in order to deal with the if-else
statement.

Solution.

� Initialization: We need to show that the loop invariant holds for i = 1. For i = 1, the
loop invariant translates to “At the beginning of iteration i = 1, the following holds: For
every 0 ≤ j < 1 (which implies that j only takes on the value 0), B[0] is the maximum

2



of the subarray A[0]”. This is trivially true since, in Line 2 of the algorithm, we have
B[0] = A[0] and, hence, B[0] is also the maximum of {A[0]}.

� Maintenance: We now assume that the loop invariant holds for iteration i, i.e., we have
B[j] = max{A[0], A[1], . . . , A[j]}, for every 0 ≤ j < i, and we need to deduce that the loop
invariant then also holds for iteration i + 1. Observe that in iteration i, only the value
of B[i] is updated. Hence, by induction, the statement of the loop-invariant is already
trivially true for every 0 ≤ j < i, and we only need to consider the remaining case j = i.

To this end, we conduct a case distinction that reflects the if-else statement in the algo-
rithm.

– First, assume that A[i] > B[i− 1] holds. By induction, we know that the statement
B[i−1] = max{A[0], . . . , A[i−1]} holds, which, together with the assumption A[i] >
B[i− 1] implies A[i] = max{A[0], . . . , A[i]}. In Line 5, we compute B[i]← A[i], and,
thus, B[i] = max{A[0], . . . , A[i]} holds, which implies the loop invariant for i+ 1.

– Next, suppose that A[i] ≤ B[i − 1] is true. Again, by induction, we know that
the statement B[i − 1] = max{A[0], . . . , A[i − 1]} holds, which, together with the
assumption A[i] ≤ B[i−1] implies B[i−1] = max{A[0], . . . , A[i−1], A[i]}. In Line 7,
we compute B[i] ← B[i − 1], and, thus, B[i] = max{A[0], . . . , A[i − 1], A[i]} holds,
which implies the loop invariant for i+ 1.

� Termination: We evaluate the loop-invariant for i = n, which corresponds to the state
of the algorithm after iteration i = n− 1 (or before a virtual iteration i = n that is never
executed). We obtain that B[j] is the maximum of A[0, j], and, in particular, B[n− 1] is
the maximum of A. The algorithm thus returns the maximum of the elements in A.

✓

3 Insertionsort

What is the runtime (in Θ-notation) of Insertionsort when executed on the following arrays of
lengths n:

1. 1, 2, 3, 4, . . . , n− 1, n

Solution. The runtime is Θ(n) since the inner loop of Insertionsort always requires time
Θ(1) on this instance (no moves are needed). ✓

2. n, n− 1, n− 2, . . . , 2, 1

Solution. The runtime is Θ(n2). An easy way to see this is as follows: Consider the last
n/2 elements of the input array. Each of these elements is moved at least n/2 positions
to the left, i.e., the inner loop requires time Θ(n) for each of these elements. The total
runtime is therefore Ω(n2 ·

n
2 ) = Ω(n2). Since the runtime of Insertionsort is O(n2) on any

instance, the runtime has to be Θ(n2). ✓

3. The array A such that A[i] = 1 if i ∈ {1, 2, 4, 8, 16, . . . } (i.e., when i is a power of two)
and A[i] = i otherwise.

3



Solution. Observe that Insertionsort does not move any of the elements (i.e., executes
the inner loop) that are outside the positions i ∈ {1, 2, 4, 8, 16, . . . }. We thus only need
to count the number of iterations of the inner loop for these positions. Observe further
that the element at position 2j , for some integer j, is moved at most 2j steps to the
left. Furthermore, we have that 2⌈logn⌉ ≥ 2logn = n. Hence, there are at most ⌈log n⌉
positions in A with value 1. The total number of iterations the inner loop of Insertionsort
is executed is therefore at most:

⌈logn⌉∑
j=0

2j = 2⌈logn⌉+1 − 1 ≤ 2logn+2 − 1 = 4n− 1 = Θ(n) .

Here we used the inequality ⌈log n⌉ ≤ log(n) + 1, and the formula
∑k

j=0 2
j = 2k+1 − 1.

The runtime therefore is O(n). However, since our aim is give the runtime in Θ notation,
we still need to argue that Insertionsort cannot be faster than Θ(n). This, however, we
already know: As discussed in the lectures, the best-case runtime of Insertionsort is Θ(n).
Hence, Insertionsort on array A has a runtime of Θ(n). ✓

4. The array B such that B[i] = 1 if i ∈ {10, 20, 30, 40 . . . } (i.e., when i is a multiple of 10)
and B[i] = i otherwise.

Solution. Similar as in the previous exercise, only the elements at positions i that are
a multiple of 10 are moved, and such an element is moved at most i steps. It is also
important to note that each such element is moved at least i/2 steps. Hence, the runtime
can be bounded from above by:

∑
i=10,20,30,...(i≤n−1)

i =

⌊n−1
10

⌋∑
j=1

10j = 10

⌊n−1
10

⌋∑
j=1

= 10 ·
(⌊n−1

10 ⌋+ 1)⌊n−1
10 ⌋

2

≤ 10 ·
(n−1

10 + 1)n−1
10

2
= Θ((n− 1)2 + (n− 1)) = Θ(n2) .

Similarly, the runtime can be bounded from below by:∑
i=10,20,30,...(i≤n−1)

i/2 = · · · = Θ(n2) ,

where the calculation is almost identical to the previous calculation. Since the runtime is
bounded from above and from below by Θ(n2), the runtime therefore is Θ(n2). ✓

5. The array C such that C[i] = 1 if i ∈ {n
1
10 , 2 · n

1
10 , 3 · n

1
10 , . . . } (i.e., when i is a multiple

of n
1
10 ) and C[i] = i otherwise. We assume here that n

1
10 is an integer.

Solution. Θ(n
19
10 ). The approach is identical to the previous exercise, but the maths is

slightly different. ✓

4



4 Runtime Analysis

Algorithm 3

Require: Integer n ≥ 2
x← 0
i← n
while i ≥ 2 do
j ← ⌈n1/4⌉ · i
while j ≥ i do

x← x+ 1
j ← j − 10

end while
i← ⌊i/

√
n⌋

end while
return x

Determine the runtime of Algorithm 3 in Θ-notation.

Solution. Let us first determine the number of times x the inner loop is executed. The value
of j evolves as follows:

⌈n1/4⌉ · i, ⌈n1/4⌉ · i− 10, ⌈n1/4⌉ · i− 20, . . .

until it reaches a value that is smaller than i. We thus have ⌈n1/4⌉ · i− x · 10 < i which yields
(⌈n1/4⌉−1)·i

10 < x and thus implies x = Θ(n1/4i).
Next, concerning the outer loop, we see that the parameter i evolves as follows (disregarding

the floor operation): n, n/
√
n =
√
n, 1. In fact, the iteration with i = 1 is never executed. The

inner loop is thus executed only twice. The overall runtime therefore is:

Θ(n1/4n) + Θ(n1/4√n)+ = Θ(n5/4)

i.e., the runtime is dominated by the first iteration of the outer loop. ✓

5 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

5.1 Proof by Induction

Let n be a positive number that is divisible by 23, i.e., n = k · 23, for some interger k ≥ 1. Let
x = ⌊n/10⌋ and let y = n % 10 (the rest of an integer division). Prove by induction on k that
23 divides x+ 7y.

Example: Consider k = 4. Then n = 92, x = 9 and y = 2. Observe that the quantity
x+ 7y = 9 + 7 · 2 = 23 is divisible by 23.

Solution. We prove the statement by induction over k. To this end, let xi be the value of x
when n = i · 23, and similarly, let yi be the value of y when n = i · 23.

5



Base case: (k = 1)
In this case, n = 1 · 23, x1 = 2 and y1 = 3. The quantity x1 + 7y1 = 23, which is divisible by
23. ✓

Induction Hypothesis: Suppose that xi + 7yi is divisible by 23.

Induction Step: We will show that xi+1+7yi+1 is also divisible by 23. We conduct a case
distinction:

� Suppose that yi ≤ 6. Then yi+1 = yi + 3 and xi+1 = xi + 2. We obtain:

xi+1 + 7yi+1 = xi + 2 + 7(yi + 3) = xi + 7yi + 2 + 21 = xi + 7yi + 23 .

Since xi + 7yi is divisible by 23 and 23 is of course divisible by 23, we have xi+1 + 7yi+1

is divisible by 23.

� Suppose that yi > 6. Then, yi+1 = yi − 7 and xi+1 = xi + 3. We obtain:

xi+1 + 7yi+1 = xi + 3 + 7(yi − 7) = xi + 7yi + 3− 49 = xi + 7yi − 46 .

Again, since xi + 7yi is divisible by 23 and 46 is divisible by 23, we have xi+1 + 7yi+1 is
divisible by 23.

✓

6


