Exercise Sheet 3: Answers COMS10017 Algorithms 2023/2024

Reminder: $\log n$ denotes the binary $\operatorname{logarithm}$, i.e., $\log n=\log _{2} n$.

Example Question: Loop Invariants

Question. Prove that the stated invariant holds throughout the execution of the loop (using the Initialization, Maintenance, Termination approach discussed in the lectures):

```
Algorithm 1
Require: Array \(A\) of length \(n(n \geq 2)\)
    \(S \leftarrow A[0]-A[1]\)
    for \(i \leftarrow 1 \ldots n-2\) do
        \(S \leftarrow S+A[i]-A[i+1]\)
    end for
    return \(S\)
```


Invariant:

At the beginning of iteration i, the statement $S=A[0]-A[i]$ holds.
Which value is returned by the algorithm (use the Terminiation property for this)?

Solution. Let S_{i} be the value of S at the beginning of iteration i.

1. Initialization $(i=1)$: We need to show that the statement of the loop invariant holds for $i=1$, i.e., the statement $S_{1}=A[0]-A[1]$ holds before iteration $i=1$. Observe that, in Line $1, S_{1}$ is initialized as $S_{1} \leftarrow A[0]-A[1]$. The loop invariant thus holds for $i=1$.
2. Maintenance: Assume that the loop invariant holds for value i, i.e., $S_{i}=A[0]-A[i]$. We need to show that the loop invariant then also holds for value $i+1$, i.e., we need to show that $S_{i+1}=A[0]-A[i+1]$ holds. To this end, observe that in iteration i we execute the operation $S_{i+1}=S_{i}+A[i]-A[i+1]$. Since $S_{i}=A[0]-A[i]$, we obtain $S_{i+1}=A[0]-A[i]+A[i]-A[i+1]=A[0]-A[i+1]$.
3. Termination: We have that, after the last iteration (or before the $(n-1)$ th iteration that is never executed), $S_{n-1}=A[0]-A[n-1]$ holds. The algorithm thus returns the value $A[0]-A[n-1]$.

1 Warm up: Proof by Induction

Consider the following sequence: $s_{1}=1, s_{2}=2, s_{3}=3$, and $s_{n}=s_{n-1}+s_{n-2}+s_{n-3}$, for every $n \geq 4$. Prove that the following holds:

$$
s_{n} \leq 2^{n} .
$$

Solution.

Base cases: We need to verify that the statement holds for $n \in\{1,2,3\}$, since s_{n} depends on s_{n-1}, s_{n-2}, and s_{n-3} (in particular, s_{4} depends on s_{3}, s_{2}, s_{1}). This is easy to verify: $s_{1}=$ $1 \leq 2^{1}, s_{2}=2 \leq 2^{2}$ and $s_{3}=3 \leq 2^{3}$.

Induction Hypothesis: We complete the proof using strong induction. The induction hypothesis is therefore as follows: For every $n^{\prime} \leq n$ the statement $s_{n^{\prime}} \leq 2^{n^{\prime}}$ holds.

Induction Step: We need to show that the statement also holds for $n+1$:

$$
s_{n+1}=s_{n}+s_{n-1}+s_{n-2} \leq 2^{n}+2^{n-1}+2^{n-2}=2^{n-2}(4+2+1) \leq 2^{n-2} \cdot 8=2^{n+1} .
$$

2 Loop Invariant

Prove that the stated loop invariant holds throughout the execution of the loop (using the Initialization, Maintenance, Termination approach discussed in the lectures):

```
Algorithm 2
Require: Array \(A\) of \(n\) positive integers
    \(B \leftarrow\) empty array of \(n\) integers
    \(B[0] \leftarrow A[0]\)
    for \(i=1 \ldots n-1\) do
        if \(A[i]>B[i-1]\) then
            \(B[i] \leftarrow A[i]\)
        else
            \(B[i] \leftarrow B[i-1]\)
        end if
    end for
    return \(B[n-1]\)
```

Loop Invariant: At the beginning of iteration i, the following statement holds: For every $0 \leq j<i: B[j]$ is the maximum of the subarray $A[0, j]$, i.e., $B[j]=\max \{A[0], \ldots, A[j]\}$.

Which value is returned by the algorithm (use the Terminiation property for this)?
Hint: The Maintenance part requires a case distinction in order to deal with the if-else statement.

Solution.

- Initialization: We need to show that the loop invariant holds for $i=1$. For $i=1$, the loop invariant translates to "At the beginning of iteration $i=1$, the following holds: For every $0 \leq j<1$ (which implies that j only takes on the value 0), $B[0]$ is the maximum
of the subarray $A[0]$ ". This is trivially true since, in Line 2 of the algorithm, we have $B[0]=A[0]$ and, hence, $B[0]$ is also the maximum of $\{A[0]\}$.
- Maintenance: We now assume that the loop invariant holds for iteration i, i.e., we have $B[j]=\max \{A[0], A[1], \ldots, A[j]\}$, for every $0 \leq j<i$, and we need to deduce that the loop invariant then also holds for iteration $i+1$. Observe that in iteration i, only the value of $B[i]$ is updated. Hence, by induction, the statement of the loop-invariant is already trivially true for every $0 \leq j<i$, and we only need to consider the remaining case $j=i$.

To this end, we conduct a case distinction that reflects the if-else statement in the algorithm.

- First, assume that $A[i]>B[i-1]$ holds. By induction, we know that the statement $B[i-1]=\max \{A[0], \ldots, A[i-1]\}$ holds, which, together with the assumption $A[i]>$ $B[i-1]$ implies $A[i]=\max \{A[0], \ldots, A[i]\}$. In Line 5 , we compute $B[i] \leftarrow A[i]$, and, thus, $B[i]=\max \{A[0], \ldots, A[i]\}$ holds, which implies the loop invariant for $i+1$.
- Next, suppose that $A[i] \leq B[i-1]$ is true. Again, by induction, we know that the statement $B[i-1]=\max \{A[0], \ldots, A[i-1]\}$ holds, which, together with the assumption $A[i] \leq B[i-1]$ implies $B[i-1]=\max \{A[0], \ldots, A[i-1], A[i]\}$. In Line 7 , we compute $B[i] \leftarrow B[i-1]$, and, thus, $B[i]=\max \{A[0], \ldots, A[i-1], A[i]\}$ holds, which implies the loop invariant for $i+1$.
- Termination: We evaluate the loop-invariant for $i=n$, which corresponds to the state of the algorithm after iteration $i=n-1$ (or before a virtual iteration $i=n$ that is never executed). We obtain that $B[j]$ is the maximum of $A[0, j]$, and, in particular, $B[n-1]$ is the maximum of A. The algorithm thus returns the maximum of the elements in A.

3 Insertionsort

What is the runtime (in Θ-notation) of Insertionsort when executed on the following arrays of lengths n :

1. $1,2,3,4, \ldots, n-1, n$

Solution. The runtime is $\Theta(n)$ since the inner loop of Insertionsort always requires time $\Theta(1)$ on this instance (no moves are needed).
2. $n, n-1, n-2, \ldots, 2,1$

Solution. The runtime is $\Theta\left(n^{2}\right)$. An easy way to see this is as follows: Consider the last $n / 2$ elements of the input array. Each of these elements is moved at least $n / 2$ positions to the left, i.e., the inner loop requires time $\Theta(n)$ for each of these elements. The total runtime is therefore $\Omega\left(\frac{n}{2} \cdot \frac{n}{2}\right)=\Omega\left(n^{2}\right)$. Since the runtime of Insertionsort is $O\left(n^{2}\right)$ on any instance, the runtime has to be $\Theta\left(n^{2}\right)$.
3. The array A such that $A[i]=1$ if $i \in\{1,2,4,8,16, \ldots\}$ (i.e., when i is a power of two) and $A[i]=i$ otherwise.

Solution. Observe that Insertionsort does not move any of the elements (i.e., executes the inner loop) that are outside the positions $i \in\{1,2,4,8,16, \ldots\}$. We thus only need to count the number of iterations of the inner loop for these positions. Observe further that the element at position 2^{j}, for some integer j, is moved at most 2^{j} steps to the left. Furthermore, we have that $2^{\lceil\log n\rceil} \geq 2^{\log n}=n$. Hence, there are at most $\lceil\log n\rceil$ positions in A with value 1. The total number of iterations the inner loop of Insertionsort is executed is therefore at most:

$$
\sum_{j=0}^{\lceil\log n\rceil} 2^{j}=2^{\lceil\log n\rceil+1}-1 \leq 2^{\log n+2}-1=4 n-1=\Theta(n) .
$$

Here we used the inequality $\lceil\log n\rceil \leq \log (n)+1$, and the formula $\sum_{j=0}^{k} 2^{j}=2^{k+1}-1$.
The runtime therefore is $O(n)$. However, since our aim is give the runtime in Θ notation, we still need to argue that Insertionsort cannot be faster than $\Theta(n)$. This, however, we already know: As discussed in the lectures, the best-case runtime of Insertionsort is $\Theta(n)$. Hence, Insertionsort on array A has a runtime of $\Theta(n)$.
4. The array B such that $B[i]=1$ if $i \in\{10,20,30,40 \ldots\}$ (i.e., when i is a multiple of 10) and $B[i]=i$ otherwise.

Solution. Similar as in the previous exercise, only the elements at positions i that are a multiple of 10 are moved, and such an element is moved at most i steps. It is also important to note that each such element is moved at least $i / 2$ steps. Hence, the runtime can be bounded from above by:

$$
\begin{aligned}
\sum_{i=10,20,30, \ldots(i \leq n-1)} i & =\sum_{j=1}^{\left\lfloor\frac{n-1}{10}\right\rfloor} 10 j=10 \sum_{j=1}^{\left\lfloor\frac{n-1}{10}\right\rfloor}=10 \cdot \frac{\left(\left\lfloor\frac{n-1}{10}\right\rfloor+1\right)\left\lfloor\frac{n-1}{10}\right\rfloor}{2} \\
& \leq 10 \cdot \frac{\left(\frac{n-1}{10}+1\right) \frac{n-1}{10}}{2}=\Theta\left((n-1)^{2}+(n-1)\right)=\Theta\left(n^{2}\right) .
\end{aligned}
$$

Similarly, the runtime can be bounded from below by:

$$
\sum_{i=10,20,30, \ldots(i \leq n-1)} i / 2=\cdots=\Theta\left(n^{2}\right)
$$

where the calculation is almost identical to the previous calculation. Since the runtime is bounded from above and from below by $\Theta\left(n^{2}\right)$, the runtime therefore is $\Theta\left(n^{2}\right)$.
5. The array C such that $C[i]=1$ if $i \in\left\{n^{\frac{1}{10}}, 2 \cdot n^{\frac{1}{10}}, 3 \cdot n^{\frac{1}{10}}, \ldots\right\}$ (i.e., when i is a multiple of $n^{\frac{1}{10}}$) and $C[i]=i$ otherwise. We assume here that $n^{\frac{1}{10}}$ is an integer.

Solution. $\Theta\left(n^{\frac{19}{10}}\right)$. The approach is identical to the previous exercise, but the maths is slightly different.

4 Runtime Analysis

```
Algorithm 3
Require: Integer \(n \geq 2\)
    \(x \leftarrow 0\)
    \(i \leftarrow n\)
    while \(i \geq 2\) do
        \(j \leftarrow\left\lceil n^{1 / 4}\right\rceil \cdot i\)
        while \(j \geq i\) do
            \(x \leftarrow x+1\)
            \(j \leftarrow j-10\)
        end while
        \(i \leftarrow\lfloor i / \sqrt{n}\rfloor\)
    end while
    return \(x\)
```

Determine the runtime of Algorithm 3 in Θ-notation.

Solution. Let us first determine the number of times x the inner loop is executed. The value of j evolves as follows:

$$
\left\lceil n^{1 / 4}\right\rceil \cdot i,\left\lceil n^{1 / 4}\right\rceil \cdot i-10,\left\lceil n^{1 / 4}\right\rceil \cdot i-20, \ldots
$$

until it reaches a value that is smaller than i. We thus have $\left\lceil n^{1 / 4}\right\rceil \cdot i-x \cdot 10<i$ which yields $\frac{\left(\left\lceil n^{1 / 4}\right\rceil-1\right) \cdot i}{10}<x$ and thus implies $x=\Theta\left(n^{1 / 4} i\right)$.

Next, concerning the outer loop, we see that the parameter i evolves as follows (disregarding the floor operation): $n, n / \sqrt{n}=\sqrt{n}, 1$. In fact, the iteration with $i=1$ is never executed. The inner loop is thus executed only twice. The overall runtime therefore is:

$$
\Theta\left(n^{1 / 4} n\right)+\Theta\left(n^{1 / 4} \sqrt{n}\right)+=\Theta\left(n^{5 / 4}\right)
$$

i.e., the runtime is dominated by the first iteration of the outer loop.

5 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

5.1 Proof by Induction

Let n be a positive number that is divisible by 23 , i.e., $n=k \cdot 23$, for some interger $k \geq 1$. Let $x=\lfloor n / 10\rfloor$ and let $y=n \% 10$ (the rest of an integer division). Prove by induction on k that 23 divides $x+7 y$.

Example: Consider $k=4$. Then $n=92, x=9$ and $y=2$. Observe that the quantity $x+7 y=9+7 \cdot 2=23$ is divisible by 23 .

Solution. We prove the statement by induction over k. To this end, let x_{i} be the value of x when $n=i \cdot 23$, and similarly, let y_{i} be the value of y when $n=i \cdot 23$.

Base case: $(k=1)$
In this case, $n=1 \cdot 23, x_{1}=2$ and $y_{1}=3$. The quantity $x_{1}+7 y_{1}=23$, which is divisible by 23. \checkmark

Induction Hypothesis: Suppose that $x_{i}+7 y_{i}$ is divisible by 23 .
Induction Step: We will show that $x_{i+1}+7 y_{i+1}$ is also divisible by 23 . We conduct a case distinction:

- Suppose that $y_{i} \leq 6$. Then $y_{i+1}=y_{i}+3$ and $x_{i+1}=x_{i}+2$. We obtain:

$$
x_{i+1}+7 y_{i+1}=x_{i}+2+7\left(y_{i}+3\right)=x_{i}+7 y_{i}+2+21=x_{i}+7 y_{i}+23 .
$$

Since $x_{i}+7 y_{i}$ is divisible by 23 and 23 is of course divisible by 23 , we have $x_{i+1}+7 y_{i+1}$ is divisible by 23 .

- Suppose that $y_{i}>6$. Then, $y_{i+1}=y_{i}-7$ and $x_{i+1}=x_{i}+3$. We obtain:

$$
x_{i+1}+7 y_{i+1}=x_{i}+3+7\left(y_{i}-7\right)=x_{i}+7 y_{i}+3-49=x_{i}+7 y_{i}-46 .
$$

Again, since $x_{i}+7 y_{i}$ is divisible by 23 and 46 is divisible by 23 , we have $x_{i+1}+7 y_{i+1}$ is divisible by 23 .

