
Exercise Sheet 3

COMS10017 Algorithms 2023/2024

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

Example Question: Loop Invariants

Question. Prove that the stated invariant holds throughout the execution of the loop (using
the Initialization, Maintenance, Termination approach discussed in the lectures):

Algorithm 1

Require: Array A of length n (n ≥ 2)
1: S ← A[0]−A[1]
2: for i← 1 . . . n− 2 do
3: S ← S +A[i]−A[i+ 1]
4: end for
5: return S

Invariant:

At the beginning of iteration i, the statement S = A[0]−A[i] holds.

Which value is returned by the algorithm (use the Terminiation property for this)?

Solution. Let Si be the value of S at the beginning of iteration i.

1. Initialization (i = 1): We need to show that the statement of the loop invariant holds for
i = 1, i.e., the statement S1 = A[0] − A[1] holds before iteration i = 1. Observe that, in
Line 1, S1 is initialized as S1 ← A[0]−A[1]. The loop invariant thus holds for i = 1.

2. Maintenance: Assume that the loop invariant holds for value i, i.e., Si = A[0] − A[i].
We need to show that the loop invariant then also holds for value i + 1, i.e., we need
to show that Si+1 = A[0] − A[i + 1] holds. To this end, observe that in iteration i we
execute the operation Si+1 = Si + A[i] − A[i + 1]. Since Si = A[0] − A[i], we obtain
Si+1 = A[0]−A[i] +A[i]−A[i+ 1] = A[0]−A[i+ 1].

3. Termination: We have that, after the last iteration (or before the (n− 1)th iteration that
is never executed), Sn−1 = A[0] − A[n − 1] holds. The algorithm thus returns the value
A[0]−A[n− 1].

✓

1



1 Warm up: Proof by Induction

Consider the following sequence: s1 = 1, s2 = 2, s3 = 3, and sn = sn−1 + sn−2 + sn−3, for every
n ≥ 4. Prove that the following holds:

sn ≤ 2n .

2 Loop Invariant

Prove that the stated loop invariant holds throughout the execution of the loop (using the
Initialization, Maintenance, Termination approach discussed in the lectures):

Algorithm 2
Require: Array A of n positive integers
1: B ← empty array of n integers
2: B[0]← A[0]
3: for i = 1 . . . n− 1 do
4: if A[i] > B[i− 1] then
5: B[i]← A[i]
6: else
7: B[i]← B[i− 1]
8: end if
9: end for

10: return B[n− 1]

Loop Invariant: At the beginning of iteration i, the following statement holds: For every
0 ≤ j < i: B[j] is the maximum of the subarray A[0, j], i.e., B[j] = max{A[0], . . . , A[j]}.

Which value is returned by the algorithm (use the Terminiation property for this)?

Hint: The Maintenance part requires a case distinction in order to deal with the if-else
statement.

3 Insertionsort

What is the runtime (in Θ-notation) of Insertionsort when executed on the following arrays of
lengths n:

1. 1, 2, 3, 4, . . . , n− 1, n

2. n, n− 1, n− 2, . . . , 2, 1

3. The array A such that A[i] = 1 if i ∈ {1, 2, 4, 8, 16, . . . } (i.e., when i is a power of two)
and A[i] = i otherwise.

4. The array B such that B[i] = 1 if i ∈ {10, 20, 30, 40 . . . } (i.e., when i is a multiple of 10)
and B[i] = i otherwise.

5. The array C such that C[i] = 1 if i ∈ {n
1
10 , 2 · n

1
10 , 3 · n

1
10 , . . . } (i.e., when i is a multiple

of n
1
10 ) and C[i] = i otherwise. We assume here that n

1
10 is an integer.

2



4 Runtime Analysis

Algorithm 3

Require: Integer n ≥ 2
x← 0
i← n
while i ≥ 2 do
j ← ⌈n1/4⌉ · i
while j ≥ i do

x← x+ 1
j ← j − 10

end while
i← ⌊i/

√
n⌋

end while
return x

Determine the runtime of Algorithm 3 in Θ-notation.

5 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

5.1 Proof by Induction

Let n be a positive number that is divisible by 23, i.e., n = k · 23, for some interger k ≥ 1. Let
x = ⌊n/10⌋ and let y = n % 10 (the rest of an integer division). Prove by induction on k that
23 divides x+ 7y.

Example: Consider k = 4. Then n = 92, x = 9 and y = 2. Observe that the quantity
x+ 7y = 9 + 7 · 2 = 23 is divisible by 23.

3


