Exercise Sheet 3
 COMS10017 Algorithms 2023/2024

Reminder: $\log n$ denotes the binary $\operatorname{logarithm}$, i.e., $\log n=\log _{2} n$.

Example Question: Loop Invariants

Question. Prove that the stated invariant holds throughout the execution of the loop (using the Initialization, Maintenance, Termination approach discussed in the lectures):

```
Algorithm 1
Require: Array \(A\) of length \(n(n \geq 2)\)
    \(S \leftarrow A[0]-A[1]\)
    for \(i \leftarrow 1 \ldots n-2\) do
        \(S \leftarrow S+A[i]-A[i+1]\)
    end for
    return \(S\)
```


Invariant:

At the beginning of iteration i, the statement $S=A[0]-A[i]$ holds.
Which value is returned by the algorithm (use the Terminiation property for this)?

Solution. Let S_{i} be the value of S at the beginning of iteration i.

1. Initialization $(i=1)$: We need to show that the statement of the loop invariant holds for $i=1$, i.e., the statement $S_{1}=A[0]-A[1]$ holds before iteration $i=1$. Observe that, in Line $1, S_{1}$ is initialized as $S_{1} \leftarrow A[0]-A[1]$. The loop invariant thus holds for $i=1$.
2. Maintenance: Assume that the loop invariant holds for value i, i.e., $S_{i}=A[0]-A[i]$. We need to show that the loop invariant then also holds for value $i+1$, i.e., we need to show that $S_{i+1}=A[0]-A[i+1]$ holds. To this end, observe that in iteration i we execute the operation $S_{i+1}=S_{i}+A[i]-A[i+1]$. Since $S_{i}=A[0]-A[i]$, we obtain $S_{i+1}=A[0]-A[i]+A[i]-A[i+1]=A[0]-A[i+1]$.
3. Termination: We have that, after the last iteration (or before the $(n-1)$ th iteration that is never executed), $S_{n-1}=A[0]-A[n-1]$ holds. The algorithm thus returns the value $A[0]-A[n-1]$.

1 Warm up: Proof by Induction

Consider the following sequence: $s_{1}=1, s_{2}=2, s_{3}=3$, and $s_{n}=s_{n-1}+s_{n-2}+s_{n-3}$, for every $n \geq 4$. Prove that the following holds:

$$
s_{n} \leq 2^{n} .
$$

2 Loop Invariant

Prove that the stated loop invariant holds throughout the execution of the loop (using the Initialization, Maintenance, Termination approach discussed in the lectures):

```
Algorithm 2
Require: Array \(A\) of \(n\) positive integers
    \(B \leftarrow\) empty array of \(n\) integers
    \(B[0] \leftarrow A[0]\)
    for \(i=1 \ldots n-1\) do
        if \(A[i]>B[i-1]\) then
            \(B[i] \leftarrow A[i]\)
        else
            \(B[i] \leftarrow B[i-1]\)
        end if
    end for
    return \(B[n-1]\)
```

Loop Invariant: At the beginning of iteration i, the following statement holds: For every $0 \leq j<i: B[j]$ is the maximum of the subarray $A[0, j]$, i.e., $B[j]=\max \{A[0], \ldots, A[j]\}$.

Which value is returned by the algorithm (use the Terminiation property for this)?
Hint: The Maintenance part requires a case distinction in order to deal with the if-else statement.

3 Insertionsort

What is the runtime (in Θ-notation) of Insertionsort when executed on the following arrays of lengths n :

1. $1,2,3,4, \ldots, n-1, n$
2. $n, n-1, n-2, \ldots, 2,1$
3. The array A such that $A[i]=1$ if $i \in\{1,2,4,8,16, \ldots\}$ (i.e., when i is a power of two) and $A[i]=i$ otherwise.
4. The array B such that $B[i]=1$ if $i \in\{10,20,30,40 \ldots\}$ (i.e., when i is a multiple of 10) and $B[i]=i$ otherwise.
5. The array C such that $C[i]=1$ if $i \in\left\{n^{\frac{1}{10}}, 2 \cdot n^{\frac{1}{10}}, 3 \cdot n^{\frac{1}{10}}, \ldots\right\}$ (i.e., when i is a multiple of $n^{\frac{1}{10}}$) and $C[i]=i$ otherwise. We assume here that $n^{\frac{1}{10}}$ is an integer.

4 Runtime Analysis

```
Algorithm 3
Require: Integer \(n \geq 2\)
    \(x \leftarrow 0\)
    \(i \leftarrow n\)
    while \(i \geq 2\) do
        \(j \leftarrow\left\lceil n^{1 / 4}\right\rceil \cdot i\)
        while \(j \geq i\) do
            \(x \leftarrow x+1\)
            \(j \leftarrow j-10\)
        end while
        \(i \leftarrow\lfloor i / \sqrt{n}\rfloor\)
    end while
    return \(x\)
```

Determine the runtime of Algorithm 3 in Θ-notation.

5 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

5.1 Proof by Induction

Let n be a positive number that is divisible by 23 , i.e., $n=k \cdot 23$, for some interger $k \geq 1$. Let $x=\lfloor n / 10\rfloor$ and let $y=n \% 10$ (the rest of an integer division). Prove by induction on k that 23 divides $x+7 y$.

Example: Consider $k=4$. Then $n=92, x=9$ and $y=2$. Observe that the quantity $x+7 y=9+7 \cdot 2=23$ is divisible by 23 .

