
Exercise Sheet 4: Answers

COMS10017 Algorithms 2023/2024

1 Algorithm Design

Describe an O(n log n) time algorithm that, given an array A of n integers and another integer
x, determines whether or not there are two elements in A whose sum equals x (Hint: Sorting!).

Solution. I will describe two different solutions. Solution 1 is the solution that I had in mind.
During an exercise class in the academic year 2019/2020, a student came up with a simpler and
more elegant solution (Solution 2)! The advantage of Solution 1 is that it runs in time O(n)
if we are guaranteed that the input array is already sorted, while Solution 2 requires time
O(n log n) even if the input array is already sorted.

Solution 1. We first sort the array A in time Θ(n log n). Assume from now on that A is
sorted. Next, we check whether A contains two elements of value x/2 in time Θ(log n) (using
binary search). If there are such elements then we are done. Else, we know that if there is
a solution then it consists of two elements x1, x2 with x1 < x/2 and x2 > x/2. Let i be the
position in array A such that A[i] < x/2 and A[i+ 1] ≥ x/2. Let j = i+ 1. Consider now the
following loop:

� If A[i] +A[j] < x then add 1 to j.

� If A[i] +A[j] > x then subtract 1 from i.

� If A[i] +A[j] = x then we found a solution and we stop.

We stop this procedure once i = −1 or j = n as we then have not found a solution. The runtime
of this procedure is clearly Θ(n), since i and j together “walk” at most a distance of n.

To see why this works, let k1, k2 with k1 < k2 be the indices of a solution, i.e., A[k1]+A[k2] =
x. Observe that, initially, we have

k1 ≤ i < j ≤ k2 . (1)

If the algorithm “misses” the solution k1, k2, then there is moment when we updated either i
or j and then Inequality 1 is no longer true, i.e., we either updated i to become value k1 − 1 or
we updated j to become value k2 + 1.

Suppose first that variable i was updated at this moment. This implies that the algorithm
went from the configuration (i = k1, j) to the configuration (i = k1 − 1, j). By construction
of the algorithm, this only happens if A[k1] + A[j] > x. This however is a contradiction, since
A[k1] +A[j] ≤ A[k1] +A[k2] = x (since j ≤ k2).

Suppose next that variable j was updated at this moment. This implies that the algorithm
went from the configuration (i, j = k2) to the configuration (i, j = k2 + 1). By construction of
the algorithm, this only happens if A[i] + A[k2] < x. This however is a contradication, since
A[i] +A[k2] > A[k1] +A[k2] = x (since i ≥ k1).

The algorithm therefore cannot miss the configuration (k1, k2).

1

Solution 2. Again, we first sort the array A in Θ(n log n) time. Assume from now on that
A is sorted. Next, we walk through the array from left to right with a for loop (using variable
i = 0 . . . n− 1). In iteration i, we use a binary search to check whether the array A contains an
element with value x−A[i]. A binary search takes time O(log n). Since we do a binary search
in each iteration, and there are n iterations at most, the runtime is O(n log n). This is a very
nice and elegant solution. Thanks to the student who came up with it.

✓

2 O-Notation (Difficult)

Prove the following statement:

O(log n) ⊆ O(2
√
logn) ⊆ O(n) .

To this end, identify a value n0 such that log n ≤ 2
√
logn ≤ n holds, for every n ≥ n0. While

the second of these two inequalities is easy to prove, the first requires an application of the
racetrack principle.

Remark: The function 2
√
logn grows faster than log n (in fact, faster than any polylogarithm

logc n, for any constant c), but grows slower than n (in fact, slower than any polynomial nϵ, for
any constant ϵ > 0). The space between polylogarithms and polynomials is therefore non-trivial.

Solution. First, from the definition of Big-O, it follows that (by setting the constants to 1)
O(log n) ⊆ O(2

√
logn) ⊆ O(n) holds if we can determine an n0 such that log n ≤ 2

√
logn ≤ n

holds, for every n ≥ n0.
Next, observe that log n = 2log logn and n = 2logn. It is therefore enough to show that

log logn ≤
√
log n ≤ log n holds, for every n ≥ n0.

We first consider the inequality
√
log n ≤ log n:√

log n ≤ log n is equivalent to

1 ≤
√

log n

1 ≤ log n

2 ≤ n ,

hence, this inequality holds for every n ≥ 2.

Next, we consider the inequality log log n ≤
√
log n. We substitute log n by x = log n. Then,

it is enough to show that log x ≤
√
x, which is equivalent to log2(x) ≤ x. We use the racetrack

principle to show that this inequality holds for every x ≥ x0 = 16. Indeed, first, observe that
log2(16) = 16 so the inequality holds for x0 = 16. It remains to prove that (log2(x))′ ≤ (x)′

holds for every x ≥ x0 = 16. Observe that (log2(x))′ = 2 log(x) · 1
x ln(2) and (x)′ = 1. Hence, we

need to argue that

2 log x

x ln(2)
≤ 1 , which is equivalent to

log x ≤ x ln(2)

2

holds, for every x ≥ x0 = 16. To show this, we use the racetrack principle, again! We first
verify that the previous inequality holds for x = x0 = 16. To this end, observe that log(16) = 4

2

and 16 ln(2)/2 = 8 ln(2) ≥ 4 since ln(2) ≈ 0.693 ≥ 1
2 . Taking derivatives as required in the

racetrack principle, we obtain the condition:

1

x ln(2)
≤ ln(2)

2
, which is equivalent to

4.16 ≈ 2

ln2(2)
≤ x ,

which thus holds for every x ≥ x0 = 16.
We have thus found a value x0 = 16 such that log x ≤

√
x. Since x = log n, we have

x0 = log n0 or n0 = 2x0 = 216. We can thus pick the value n0 = 216. ✓

3 Mergesort

The Mergesort algorithm uses the Merge operation, which assumes that the left and the right
halves of an array A of length n are already sorted, and merges these two halves so that A is
sorted afterwards. The runtime of this operation is O(n).

Suppose that we replaced the Merge operation in our Mergesort algorithm with a less
efficient implementation that runs in time O(n2) (instead of O(n)). What is the runtime of our
modified Mergesort algorithm?

Solution. Similar to the analysis in the lecture, we sum up the work in each level of the
recursion tree. In level i, there are at most 2i−1 nodes, and the arrays in level i are of lengths
at most ⌈ n

2i−1 ⌉. The runtime in level i on a single node is then O(⌈ n
2i−1 ⌉2) = O(n2

22(i−1)). We
thus obtain:

⌈logn⌉+1∑
i=1

2i−1O(
n2

22(i−1)
) =

⌈logn⌉+1∑
i=1

O(
n2

2i−1
) = O(n2)

⌈logn⌉+1∑
i=1

1

2i−1
≤ O(n2) · 2 = O(n2) ,

where we used the geometric series
∑∞

i=0
1
2i

= 2.
Observe that, interestingly, the maths show that no log n factor is introduced here as opposed

to the case where the runtime on a single node is O(n). ✓

4 Bubblesort

Bubblesort is a popular, but inefficient, sorting algorithm. It works by repeatedly swapping
adjacent elements that are out of order:

Algorithm 1 Bubblesort

Require: Array A of n integers
1: for i = 0 to n− 2 do
2: for j = n− 1 downto i+ 1 do
3: if A[j] < A[j − 1] then
4: exchange A[j] with A[j − 1]
5: end if
6: end for
7: end for

1. What are the worst-case, best-case, and average-case runtimes of Bubblesort?

3

Solution. We see that the number of times the operations in Lines 3 and 4 are executed
is independent of the input, or, in other words, the outer loop always goes from 0 to n− 2
and the inner loop always goes from n− 1 downto i+1. Hence, the best-case, worst-case,
and average-case runtimes of the algorithm are the same.

To analyse the runtime, observe that the operation in Line 4, i.e., exchanging two elements
in the array, takes time O(1). The runtime is therefore bounded by the number of times
Line 4 is executed. The outer loop goes from i = 0 to n− 2, and the inner loop goes from
j = n− 1 downto i+ 1. We therefore compute:

n−2∑
i=0

n−1∑
j=i+1

O(1) = O(1) ·
n−2∑
i=0

n−1∑
j=i+1

1 = O(1) ·
n−2∑
i=0

((n− 1)− (i+ 1) + 1)

= O(1) ·
n−2∑
i=0

(n− i− 1) = O(1) ·

(
(n− 1)2 −

n−2∑
i=0

i

)

= O(1)

(n− 1)2 − (n− 2)(n− 1)

2︸ ︷︷ ︸
≤(n−1)2/2

 ≤ O(1)
(
(n− 1)2/2

)
= O(n2) .

✓

2. Consider the loop in lines 2− 6. Prove that the following invariant holds at the beginning
of the loop:

A[j] ≤ A[k], for every k ≥ j .

Give a suitable termination property of the loop.

Solution.

Initialization: We need to show that the property is true prior to the first iteration of the
loop. Let j = n− 1. Then the property translates to A[n− 1] ≤ A[k] for every k ≥ n− 1.
This is trivially true since the only value for k such that k ≥ n − 1 that also lies within
the boundaries of the array is k = n − 1. It is of course true that A[n − 1] ≤ A[n − 1].
The property thus holds.

Maintenance: Suppose that the property is true before an iteration j of the loop, i.e.,
A[j] ≤ A[k] holds for every k ≥ j. We will show that the property also holds before the
next iteration. Observe that before the next iteration, the value of j is decreased. We thus
need to show that after the current iteration, A[j − 1] ≤ A[k] holds for every k ≥ j − 1.

Considering the algorithm, there are two cases: Either the if-condition evaluates to true,
or it evaluates to false.

Case 1: A[j] ≥ A[j − 1]. (i.e., the if evaluates to false)
In this case nothing happens to the array elements. We need to show that A[j−1] ≤ A[k],
for every k ≥ j − 1. We already know that A[j] ≤ A[k] for every k ≥ j. Since A[j − 1] ≤
A[j], the loop invariant is thus also true.

Case 2: A[j] < A[j − 1]. (i.e., the if evaluates to true)
In this case, A[j] is exchanged with A[j − 1]. We need to show that after the exchange
A[j − 1] ≤ A[k] for every k ≥ j − 1. Consider thus the state of the array after the

4

exchange. Concerning k = j − 1, this is trivially true (i.e, A[j − 1] ≤ A[j − 1] clearly
holds). Concerning k = j, this is also true due to the if-statement evaluating to true
and the fact that we exchanged the two elements. Concerning all other values of k, i.e.,
k ≥ j+1, this follows from the loop invariant being true at the beginning of the iteration.

Termination: We are guaranteed that A[i] ≤ A[k], for every k ≥ i. ✓

3. Consider now the loop in lines 1 − 7. Prove that the following invariant holds at the
beginning of the loop:

The subarray A[0, i] is sorted and A[0, i− 1] consists of the i− 1 smallest elements of A.

Give a suitable termination property that shows that A is sorted upon termination.

Solution.

Initialization: We need to show that the property is true prior to the first iteration
of the loop. At the beginning of the first iteration we have i = 0. Then the property
translates to “the subarray A[0 . . . 0] is sorted and A[0,−1] consists of the i − 1 smallest
elements of A”. This is trivially true, since A[0 . . . 0] = A[0] consists of a single elements,
and A[0 · · · − 1] is empty.

Maintenance: Suppose that the property is true before an iteration i of the loop, i.e.,
A[0, . . . , i] is sorted and A[0 . . . i − 1] are the i − 1 smallest elements of A. We will
show that the property also holds before the next iteration. By the termination property
stated in the last exercise, we have that A[i] ≤ A[k], for every k ≥ i, or, in other words,
A[i] is the smallest element in A[i, n − 1]. By the loop invariant, A[0, . . . , i − 1] are the
i− 1 smallest elements in increasing order. Hence, the subarray A[0, . . . , i] contains the i
smallest elements in A in increasing order. This implies further that the subarray A[0, i+1]
is sorted (note that no matter which element is at position i+ 1, the array is sorted).

Termination: We are guaranteed that A is sorted.

✓

5 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

5.1 Closest Pair of Points (hard!)

The input consists of two arrays of n real numbers X,Y and represent n points with coordinates
(X[0], Y [0]), (X[1], Y [1]), . . . , (X[n−1], Y [n−1]). Give a divide-and-conquer algorithm that finds
the pair of points that are closest to each other, i.e., the output consists of a two indices i, j
such that (X[i], Y [i]) and (X[j], Y [j]) are the two closest points.

5

