Exercise Sheet 6: Answers COMS10017 Algorithms 2023/2024

Reminder: $\log n$ denotes the binary $\operatorname{logarithm}$, i.e., $\log n=\log _{2} n$.

1 Big- O Notation

Rank the following functions by order of growth: (no proof needed)

$$
(\sqrt{2})^{\log n}, n^{2}, n!,(\log n)!,\left(\frac{3}{2}\right)^{n}, n^{3}, \log ^{2} n, \log (n!), 2^{2^{n}}, n \log n
$$

Hint: Stirling's approximation for the factorial function can be helpful:

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n}
$$

Solution.

$$
\begin{aligned}
O\left(\log ^{2} n\right) & \subseteq O\left((\sqrt{2})^{\log n}\right) \subseteq O(\log (n!)) \subseteq O(n \log n) \subseteq O\left(n^{2}\right) \\
& \subseteq O\left(n^{3}\right) \subseteq O((\log (n))!) \subseteq O\left(\left(\frac{3}{2}\right)^{n}\right) \subseteq O(n!) \subseteq O\left(2^{2^{n}}\right)
\end{aligned}
$$

$2 k$ th Largest Element

Give an algorithm that runs in time $O(n+k \log n)$ that computes the k th largest number in an array of n distinct integers.

Hint: Think about Heapsort!

Solution. In Heapsort, we can construct the tree in time $O(n)$. Then, we can run the first k steps of the Heapsort algorithm, which places the k largest elements at the end of the array. Each step of the sorting takes time $O(\log n)$ (which comes from the Heapify () operation). The total runtime therefore is $O(n+k \log n)$.

3 Sorting

We are given an array A with $n+m$ elements so that the first n elements are sorted and the last m elements are unsorted.

1. What is the runtime of Insertionsort on array A ?

Solution. $\quad O(m(n+m))$.
2. Suppose that $m=O(1)$. How can we sort A as efficiently as possible and what is the resulting runtime?

Solution. We can run Insertionsort on the unsorted elements. This would then take time $O(n)$.
3. Suppose that $m=O(\sqrt{n})$. How can we sort A as efficiently as possible and what is the resulting runtime?

Solution. We can run any $O(m \log m)$ sorting algorithm in order to sort the unsorted elements first. Then, we merge the two sorted parts in time $O(n+m)$, resulting in a sorting algorithm that runs in time $O(m \log (m)+n+m)=O(n+m \log m)$. If $m=O(\sqrt{n})$, then the final runtime is $O(n)$.
4. What is the largest value of m so that we can obtain a runtime of $O(n)$? (difficult!)

Solution. According to the previous exercise, the runtime is $O(m \log (m)+n)$. We need to identify the largest value for m such that $O(m \log (m)+n)=O(n)$. This is equivalent to choosing the largest m such that $O(m \log m)=O(n)$.

First, suppose that $m=\Theta(n / \log (n))$. Then:

$$
\begin{aligned}
m \log m & =O(n / \log (n) \cdot \log (n / \log (n))) \\
& =O(n / \log (n) \cdot(\log (n)-\log \log (n))) \\
& =O(n+n \log \log (n) / \log (n))=O(n)
\end{aligned}
$$

since both n and $n \log \log (n) / \log (n)$ are in $O(n)$.
Next, suppose that $m \in O(n)$ if $m=\Theta(f(n) n / \log (n))$, for some growing (superconstant) function f. Then:

$$
\begin{aligned}
m \log m & =O(f(n) n / \log (n) \cdot \log (f(n) n / \log (n))) \\
& =O(f(n) n / \log (n) \cdot(f(n)+\log (n)-\log \log (n))) \\
& =O\left((f(n))^{2} n / \log (n)+f(n) n+f(n) n \log \log (n) / \log (n)\right) \notin O(n)
\end{aligned}
$$

since $f(n) n \notin O(n)$ (since $f(n)$ is increasing with n and hence superconstant). This implies that the largest m is in $\Theta(n / \log n)$.
5. Suppose that $m=\Theta(n)$. How can we sort A as efficiently as possible and what is the resulting runtime?

Solution. We can use any $O(n \log n)$ time sorting algorithm to obtain a total runtime of $O(n \log n)$.

4 Decision Trees

1. Give a lower bound on the number of queries needed for sorting 4 elements.

Solution. At least 5 queries are needed. There are $4!=24$ possible permutations, which correspond to the leaves in a decision tree. Any binary tree with 24 leaves has a height of at least 6 . A root-to-leaf path of length 6 visits at least 5 internal nodes, which correspond to the number of queries.
2. Give an optimal decision tree/guessing strategy for sorting 4 elements a, b, c, d (draw the decision tree).

Solution.

3. How many comparisons does the Insertionsort algorithm make in the worst case when sorting an array of length 4 ?

Solution. In the worst case it makes 6 comparisons: In the worst case i comparisons are needed for inserting the element $A[i]$ into the already sorted prefix. Hence, we need $1+2+3=6$ comparisons.

5 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

5.1 A Different Type of Sorting Algorithm

Consider the following algorithm for sorting an array A of size n :

1. Sort recursively the first $2 / 3$ of A, i.e., $A[0, \ldots, 2 / 3 n-1]$
2. Sort recursively the last $2 / 3$ of A, i.e., $A[n / 3-1, n-1]$
3. Sort recursively the first $2 / 3$ of A, i.e., $A[0, \ldots, 2 / 3 n-1]$

Answer the following questions:

1. Argue/prove that the algorithm really sorts A.

2 . What is the runtime of A ?

