
Exercise Sheet 6: Answers

COMS10017 Algorithms 2023/2024

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

1 Big-O Notation

Rank the following functions by order of growth: (no proof needed)

(
√
2)logn, n2, n!, (log n)!, (

3

2
)n, n3, log2 n, log(n!), 22

n
, n log n

Hint: Stirling’s approximation for the factorial function can be helpful:

e(
n

e
)n ≤ n! ≤ en(

n

e
)n

Solution.

O(log2 n) ⊆ O((
√
2)logn) ⊆ O(log(n!)) ⊆ O(n log n) ⊆ O(n2)

⊆ O(n3) ⊆ O((log(n))!) ⊆ O((
3

2
)n) ⊆ O(n!) ⊆ O(22

n
)

✓

2 kth Largest Element

Give an algorithm that runs in time O(n+ k log n) that computes the kth largest number in an
array of n distinct integers.

Hint: Think about Heapsort!

Solution. In Heapsort, we can construct the tree in time O(n). Then, we can run the first
k steps of the Heapsort algorithm, which places the k largest elements at the end of the array.
Each step of the sorting takes time O(log n) (which comes from the Heapify() operation). The
total runtime therefore is O(n+ k log n). ✓

3 Sorting

We are given an array A with n +m elements so that the first n elements are sorted and the
last m elements are unsorted.

1. What is the runtime of Insertionsort on array A?

1



Solution. O(m(n+m)). ✓

2. Suppose that m = O(1). How can we sort A as efficiently as possible and what is the
resulting runtime?

Solution. We can run Insertionsort on the unsorted elements. This would then take
time O(n). ✓

3. Suppose that m = O(
√
n). How can we sort A as efficiently as possible and what is the

resulting runtime?

Solution. We can run any O(m logm) sorting algorithm in order to sort the unsorted
elements first. Then, we merge the two sorted parts in time O(n+m), resulting in a sorting
algorithm that runs in time O(m log(m)+n+m) = O(n+m logm). If m = O(

√
n), then

the final runtime is O(n). ✓

4. What is the largest value of m so that we can obtain a runtime of O(n)? (difficult!)

Solution. According to the previous exercise, the runtime is O(m log(m)+n). We need
to identify the largest value for m such that O(m log(m) + n) = O(n). This is equivalent
to choosing the largest m such that O(m logm) = O(n).

First, suppose that m = Θ(n/ log(n)). Then:

m logm = O(n/ log(n) · log(n/ log(n)))
= O(n/ log(n) · (log(n)− log log(n)))

= O(n+ n log log(n)/ log(n)) = O(n) ,

since both n and n log log(n)/ log(n) are in O(n).

Next, suppose that m ∈ O(n) if m = Θ(f(n)n/ log(n)), for some growing (superconstant)
function f . Then:

m logm = O(f(n)n/ log(n) · log(f(n)n/ log(n)))
= O(f(n)n/ log(n) · (f(n) + log(n)− log log(n)))

= O((f(n))2n/ log(n) + f(n)n+ f(n)n log log(n)/ log(n)) /∈ O(n) ,

since f(n)n /∈ O(n) (since f(n) is increasing with n and hence superconstant). This
implies that the largest m is in Θ(n/ log n). ✓

5. Suppose that m = Θ(n). How can we sort A as efficiently as possible and what is the
resulting runtime?

Solution. We can use any O(n log n) time sorting algorithm to obtain a total runtime
of O(n log n). ✓

4 Decision Trees

1. Give a lower bound on the number of queries needed for sorting 4 elements.

2



Solution. At least 5 queries are needed. There are 4! = 24 possible permutations, which
correspond to the leaves in a decision tree. Any binary tree with 24 leaves has a height of
at least 6. A root-to-leaf path of length 6 visits at least 5 internal nodes, which correspond
to the number of queries. ✓

2. Give an optimal decision tree/guessing strategy for sorting 4 elements a, b, c, d (draw the
decision tree).

Solution.

✓

3. How many comparisons does the Insertionsort algorithm make in the worst case when
sorting an array of length 4?

Solution. In the worst case it makes 6 comparisons: In the worst case i comparisons
are needed for inserting the element A[i] into the already sorted prefix. Hence, we need
1 + 2 + 3 = 6 comparisons. ✓

5 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

5.1 A Different Type of Sorting Algorithm

Consider the following algorithm for sorting an array A of size n:

1. Sort recursively the first 2/3 of A, i.e., A[0, . . . , 2/3n− 1]

2. Sort recursively the last 2/3 of A, i.e., A[n/3− 1, n− 1]

3. Sort recursively the first 2/3 of A, i.e., A[0, . . . , 2/3n− 1]

Answer the following questions:

1. Argue/prove that the algorithm really sorts A.

2. What is the runtime of A?

3


