Exercise Sheet 7: Answers COMS10017 Algorithms 2023/2024

Reminder: $\log n$ denotes the binary logarithm, i.e., $\log n = \log_2 n$.

1 Countingsort and Radixsort

1. We use Countingsort to sort the following array A:

4 2 2 0 1 4 2

Answer the following questions:

(a) What is the state of the auxiliary array C after the second loop of the algorithm?

Solution.

$$C = 1 \quad 2 \quad 5 \quad 5 \quad 7$$

Remark: C[i] indicates how many elements in A have a value less or equal to i. \checkmark (b) What is the state of C after each iteration i of the third loop?

Solution.

i	C[0]	C[1]	C[2]	C[3]	C[4]
initial	1	2	5	5	7
i = 6	1	2	4	5	7
i = 5	1	2	4	5	6
i = 4	1	1	4	5	6
i = 3	0	1	4	5	6
i = 2	0	1	3	5	6
i = 1	0	1	2	5	6
i = 0	0	1	2	5	5

Remark: Observe that the highlighted numbers are all different. Is this a coincidence or is this necessarily always the case?

 \checkmark

2. Illustrate how Radixsort sorts the following binary numbers:

 $100110 \quad 101010 \quad 001010 \quad 010111 \quad 100000 \quad 000101$

1

Solution.

100110	10011 0	1000 0 0	100 0 00	10 0 000	100000	0 00101
101010	10101 0	0001 0 1	101 0 10	00 0 101	0 0 0101	0 01010
001010	001010	100110	001 0 10	100110	1 0 0110	0 10111
010111 ~	100000 ~	1010 1 0 7	000101	01 0 111	10 1010	1 00000
100000	01011 1	0010 1 0	100 1 10	101010	0 0 1010	100110
000101	00010 1	0101 1 1	010 1 11	00 1 010	0 1 0111	101010

 \checkmark

 \checkmark

3. Radixsort sorts an array A of length n consisting of d-digit numbers where each digit is from the set $\{0, 1, \ldots, b\}$ in time O(d(n+b)).

We are given an array A of n integers where each integer is polynomially bounded, i.e., each integer is from the range $\{0, 1, \ldots, n^c\}$, for some constant c. Argue that Radixsort can be used to sort A in time O(n).

Hint: Find a suitable representation of the numbers in $\{0, 1, ..., n^c\}$ as *d*-digit numbers where each digit comes from a set $\{0, 1, ..., b\}$ so that Radixsort runs in time O(n). How do you chose *d* and *b*?

Solution. We encode the numbers in A using digits from the set $\{0, 1, \ldots, n-1\}$, i.e., we set b = n - 1. To be able to encode all numbers in the range $\{0, 1, \ldots, n^c\}$ it is required that $(b+1)^d \ge n^c + 1$ (we can encode $(b+1)^d$ different numbers using d digits where each digit comes from a set of cardinality b + 1, and the cardinality of the set $\{0, 1, \ldots, n^c\}$ is $n^c + 1$). Since $(b+1)^d = n^d$, we can set d = c+1, since

$$n^{c+1} \ge n^c + 1$$

holds for every $n \ge 2$ (assuming that $c \ge 1$). The runtime then is

$$O(d(n+b)) = O((c+1)(n+(n-1))) = O((c+1)2n) = O(n) ,$$

since 2 and c + 1 are both constants.

2 Loop Invariant for Radixsort

Radixsort is defined as follows:

Require: Array A of length n consisting of d-digit numbers where each digit is taken from the set {0, 1, ..., b}
1: for i = 1, ..., d do
2: Use a stable sort algorithm to sort array A on digit i
3: end for

(least significant digit is digit 1)

In this exercise we prove correctness of Radixsort via the following loop invariant:

At the beginning of iteration i of the for-loop, i.e., after i has been updated in Line 1 but Line 2 has not yet been executed, the following holds:

The integers in A are sorted with respect to their last i - 1 digits.

1. Initialization: Argue that the loop-invariant holds for i = 1.

Solution. In the beginning of the iteration with i = 1 the loop-invariant states that the integers in A are sorted with respect to their last i - 1 = 0 digits. This is trivially true. \checkmark

2. Maintenance: Suppose that the loop-invariant is true for some i. Show that it then also holds for i + 1.

Hint: You need to use the fact that the employed sorting algorithm as a subroutine is stable.

Solution. Suppose that the integers in A are sorted with respect to their last i-1 digits at the beginning of iteration i. We will show that at the beginning of iteration i+1 the integers are sorted with respect to their last i digits.

Let A_{i+1} be the state of A in the beginning of iteration i+1. For an integer x, let $x^{(i)}$ be the integer obtained by removing all but the last i digits from x. Suppose for the sake of a contradiction that there are indices j, k with j < k such that $(A_{i+1}[j])^{(i)} > (A_{i+1}[k])^{(i)}$. If such integers exist then the loop invariant would not hold. We will show that assuming that these integers exist leads to a contradiction.

First, suppose that digit *i* of $(A_{i+1}[j])^{(i)}$ and digit *i* of $(A_{i+1}[k])^{(i)}$ are identical. Note that this implies $(A_{i+1}[j])^{(i-1)} > (A_{i+1}[k])^{(i-1)}$. Observe that in iteration *i*, the digits are sorted with respect to digit *i*. Since the subroutine employed in Radixsort is a stable sort algorithm, the relative order of the two numbers has not changed since their *i*th digits are identical. This implies that the relative order of the two numbers was the same at the beginning of iteration *i*. This is a contradiction, since the loop invariant at the beginning of iteration *i* states that the digits are sorted with respect to their i-1 last digits, however, $(A_{i+1}[j])^{(i-1)} > (A_{i+1}[k])^{(i-1)}$ holds.

Next, suppose that digit *i* of $(A_{i+1}[j])^{(i)}$ and digit *i* of $(A_{i+1}[k])^{(i)}$ are different. Then, since $(A_{i+1}[j])^{(i)} > (A_{i+1}[k])^{(i)}$ we have that digit *i* of $(A_{i+1}[j])^{(i)}$ is necessarily larger than digit *i* of $(A_{i+1}[k])^{(i)}$. This however is a contradiction to the fact that the numbers were sorted with respect to their *i*th digit in iteration *i*.

Hence, the assumption that there are indices j, k such that $(A_{i+1}[j])^{(i)} > (A_{i+1}[k])^{(i)}$ is wrong. If no such indices exist then the integers in A are sorted with respect to their last i digits at the beginning of iteration i + 1.

3. Termination: Use the loop-invariant to conclude that A is sorted after the execution of the algorithm.

Solution. After iteration d (or before iteration d + 1, which is never executed), the invariant states that the numbers in A are sorted with respect to their last d digits, which simply means that all numbers are now sorted with regards to all their digits. \checkmark

3 Recurrences: Substitution Method

1. Consider the following recurrence:

$$T(1) = 1$$
 and $T(n) = T(n-1) + n$

Show that $T(n) \in O(n^2)$ using the substitution method.

Solution. We need to show that $T(n) \leq C \cdot n^2$, for some suitable constant C. To this end, we first plug our guess into the recurrence:

$$T(n) = T(n-1) + n \le C(n-1)^2 + n$$

It is required that $C(n-1)^2 + n \le Cn^2$:

$$C(n-1)^2 + n \leq Cn^2$$

$$C(n^2 - 2n + 1) + n \leq Cn^2$$

$$C - 2Cn + n \leq 0$$

$$C(1 - 2n) \leq -n$$

$$C \geq \frac{n}{2n - 1}$$

Observe that $\frac{n}{2n-1} \leq 1$ holds for every $n \geq 1$. Our guess thus holds for every $C \geq 1$.

It remains to verify the base case. We have T(1) = 1 and $C1^2 = C$. Hence, $C1^2 \leq T(1)$ holds for every $C \geq 1$. We thus choose C = 1.

We have shown that $T(n) \leq Cn^2 = n^2$ holds for every $n \geq 1$. This implies that $T(n) = O(n^2)$.

2. Consider the following recurrence:

$$T(1) = 1$$
 and $T(n) = T(\lceil n/2 \rceil) + 1$

Show that $T(n) \in O(\log n)$ using the substitution method. *Hint:* Use the inequality $\lceil n/2 \rceil \leq \frac{n}{\sqrt{2}} = \frac{n}{2^{\frac{1}{2}}}$, which holds for all $n \geq 2$. Use n = 2 as your base case.

Solution. We need to show that $T(n) \leq C \cdot \log n$, for a suitable constant C. To this end, we plug our guess into the recurrence:

$$T(n) = T(\lceil n/2 \rceil) + 1$$

$$\leq C \cdot \log(\lceil n/2 \rceil) + 1$$

$$\leq C \cdot \log\left(\frac{n}{\sqrt{2}}\right) + 1$$

$$= C \log(n) - C \cdot \frac{1}{2} \log(2) + 1$$

$$= C \log(n) - \frac{1}{2}C + 1 ,$$

where we used the inequality $\lceil n/2 \rceil \leq \frac{n}{\sqrt{2}}$. It is required that $C \log(n) - \frac{1}{2}C + 1 \leq C \log(n)$:

$$C \log(n) - \frac{1}{2}C + 1 \leq C \log(n)$$

$$1 \leq \frac{1}{2}C$$

$$2 \leq C.$$

The "induction step" part of the proof thus works for any $C \ge 2$. Regarding the base case, we will consider n = 2. We have:

$$T(2) = T(1) + 1 = 2$$

We thus need to show that $2 \leq C \log 2$. This holds for every $C \geq 2$. We can thus pick the value C = 2. This proves that $T(n) \in O(\log n)$.

4 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

4.1 Algorithmic Puzzle: Maxima of Windows of length n/2

We are given an array A of n positive integers, where n is even. Give an algorithm that outputs an array B of length n/2 such that $B[i] = \max\{A[j], i \leq j \leq i + n/2 - 1\}$. Can you find an algorithm that runs in time O(n)?

Solution. Let C[i] and D[i] be new arrays of lengths n/2. We first observe that we can rewrite B[i] as the maximum of two maxima:

$$B[i] = \max\{C[i], D[i]\}, \text{ where}$$

$$C[i] = \max\{A[j] : i \le j \le n/2 - 1\}, \text{ and}$$

$$D[i] = \max(\{A[j] : n/2 \le j \le i + n/2 - 1\} \cup \{0\})$$

Suppose we already computed the tables C and D. Then in O(n) time, we can compute the table B by computing the maxima $\max\{C[i], D[i]\}$ for every $0 \le i \le n/2 - 1$. It thus remains to compute tables C and D. To this end, observe that C[n/2 - 1] = A[n/2 - 1], and for every k < n/2 - 1, we have $C[k] = \max\{A[k], C[k + 1]\}$. We thus obtain the following algorithm for computing the table C:

Algorithm 1 Computing table C $C[n/2-1] \leftarrow A[n/2-1]$ for $i = n/2 - 2 \dots 0$ do $C[i] \leftarrow \max\{A[i], C[i+1]\}$ end for

Similarly, observe that D[0] = 0, and for every k > 0, we have $D[k] = \max\{D[k-1], A[k+n/2]\}$. We thus obtain the following algorithm for computing table D:

Algorithm 2 Computing table D

 $\begin{array}{l} D[0] \leftarrow 0\\ \textbf{for } i = 1 \dots n/2 - 1 \ \textbf{do}\\ D[i] \leftarrow \max\{A[i + n/2], D[i - 1]\}\\ \textbf{end for} \end{array}$

Computing tables C and D takes O(n) time. The total runtime is therefore O(n).