## Exercise Sheet 7 COMS10017 Algorithms 2023/2024

Reminder: $\log n$ denotes the binary $\operatorname{logarithm}$, i.e., $\log n=\log _{2} n$.

## 1 Countingsort and Radixsort

1. We use Countingsort to sort the following array $A$ :

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline 4 & 2 & 2 & 0 & 1 & 4 & 2 \\
\hline
\end{array}
$$

Answer the following questions:
(a) What is the state of the auxiliary array $C$ after the second loop of the algorithm?
(b) What is the state of $C$ after each iteration $i$ of the third loop?
2. Illustrate how Radixsort sorts the following binary numbers:

$$
\begin{array}{llllll}
100110 & 101010 & 001010 & 010111 & 100000 & 000101
\end{array}
$$

3. Radixsort sorts an array $A$ of length $n$ consisting of $d$-digit numbers where each digit is from the set $\{0,1, \ldots, b\}$ in time $O(d(n+b))$.

We are given an array $A$ of $n$ integers where each integer is polynomially bounded, i.e., each integer is from the range $\left\{0,1, \ldots, n^{c}\right\}$, for some constant $c$. Argue that Radixsort can be used to sort $A$ in time $O(n)$.

Hint: Find a suitable representation of the numbers in $\left\{0,1, \ldots, n^{c}\right\}$ as $d$-digit numbers where each digit comes from a set $\{0,1, \ldots, b\}$ so that Radixsort runs in time $O(n)$. How do you chose $d$ and $b$ ?

## 2 Loop Invariant for Radixsort

Radixsort is defined as follows:

```
Require: Array A of length n consisting of d-digit numbers where each digit
    is taken from the set {0,1,\ldots,b}
    for i=1,\ldots,d do
        Use a stable sort algorithm to sort array A on digit i
    end for
```

(least significant digit is digit 1)

In this exercise we prove correctness of Radixsort via the following loop invariant:
At the beginning of iteration $i$ of the for-loop, i.e., after $i$ has been updated in Line 1 but Line 2 has not yet been executed, the following holds:

The integers in $A$ are sorted with respect to their last $i-1$ digits.

1. Initialization: Argue that the loop-invariant holds for $i=1$.
2. Maintenance: Suppose that the loop-invariant is true for some $i$. Show that it then also holds for $i+1$.

Hint: You need to use the fact that the employed sorting algorithm as a subroutine is stable.
3. Termination: Use the loop-invariant to conclude that $A$ is sorted after the execution of the algorithm.

## 3 Recurrences: Substitution Method

1. Consider the following recurrence:

$$
T(1)=1 \text { and } T(n)=T(n-1)+n
$$

Show that $T(n) \in O\left(n^{2}\right)$ using the substitution method.
2. Consider the following recurrence:

$$
T(1)=1 \text { and } T(n)=T(\lceil n / 2\rceil)+1
$$

Show that $T(n) \in O(\log n)$ using the substitution method.
Hint: Use the inequality $\lceil n / 2\rceil \leq \frac{n}{\sqrt{2}}=\frac{n}{2^{\frac{1}{2}}}$, which holds for all $n \geq 2$. Use $n=2$ as your base case.

## 4 Optional and Difficult Questions

Exercises in this section are intentionally more difficult and are there to challenge yourself.

### 4.1 Algorithmic Puzzle: Maxima of Windows of length $n / 2$

We are given an array $A$ of $n$ positive integers, where $n$ is even. Give an algorithm that outputs an array $B$ of length $n / 2$ such that $B[i]=\max \{A[j], i \leq j \leq i+n / 2-1\}$. Can you find an algorithm that runs in time $O(n)$ ?

