
Peak Finding
COMS10018 - Algorithms

Dr Christian Konrad

Dr Christian Konrad Peak Finding 1 / 11

Peak Finding

Let A = a0, a1, . . . , an−1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

Definition: (Peak)
Integer ai is a peak if adjacent integers are not larger than ai

Example:

Dr Christian Konrad Peak Finding 2 / 11

Peak Finding

Let A = a0, a1, . . . , an−1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

Definition: (Peak)
Integer ai is a peak if adjacent integers are not larger than ai

Example:

Dr Christian Konrad Peak Finding 2 / 11

Peak Finding

Let A = a0, a1, . . . , an−1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

Definition: (Peak)
Integer ai is a peak if adjacent integers are not larger than ai

Example:

4 3 9 10 14 8 7 2 2 2

Dr Christian Konrad Peak Finding 2 / 11

Peak Finding

Let A = a0, a1, . . . , an−1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

Definition: (Peak)
Integer ai is a peak if adjacent integers are not larger than ai

Example:

4 3 9 10 14 8 7 2 2 2

Dr Christian Konrad Peak Finding 2 / 11

Peak Finding: Simple Algorithm

Problem Peak Finding: Write algorithm with properties:

1 Input: An integer array of length n

2 Output: A position 0 ≤ i ≤ n − 1 such that ai is a peak

Dr Christian Konrad Peak Finding 3 / 11

Peak Finding: Simple Algorithm

Problem Peak Finding: Write algorithm with properties:

1 Input: An integer array of length n

2 Output: A position 0 ≤ i ≤ n − 1 such that ai is a peak

i n t peak (i n t *A, i n t l e n) {
i f (A [0] >= A[1])

re tu rn 0 ;
i f (A[l en =1] >= A[len =2])

re tu rn l en =1;

f o r (i n t i =1; i < l en =1; i=i +1) {
i f (A[i] >= A[i =1] && A[i] >= A[i +1])

re tu rn i ;
}

re tu rn =1;
}

C++ code

Dr Christian Konrad Peak Finding 3 / 11

Peak Finding: Simple Algorithm

Problem Peak Finding: Write algorithm with properties:

1 Input: An integer array of length n

2 Output: A position 0 ≤ i ≤ n − 1 such that ai is a peak

Require: Integer array A of length n
if A[0] ≥ A[1] then

return 0
if A[n − 1] ≥ A[n − 2] then

return n − 1
for i = 1 . . . n − 2 do
if A[i] ≥ A[i − 1] and A[i] ≥ A[i + 1] then

return i
return −1

Pseudo code

Dr Christian Konrad Peak Finding 3 / 11

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Dr Christian Konrad Peak Finding 4 / 11

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Dr Christian Konrad Peak Finding 4 / 11

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a1 > a0 since
otherwise a0 is a peak. But then a2 > a1 since otherwise a1 is a
peak. Continuing, for the same reason, ai > ai−1 since otherwise
ai−1 is a peak, for every i ≤ n − 1. But this implies an−1 > an−2

and hence an−1 is a peak. A contradiction. Hence, every array has
a peak.

0 1 2 3 4 5 6

a0 a1 a2 a3 a4 a5 a6

Dr Christian Konrad Peak Finding 4 / 11

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a1 > a0 since
otherwise a0 is a peak. But then a2 > a1 since otherwise a1 is a
peak. Continuing, for the same reason, ai > ai−1 since otherwise
ai−1 is a peak, for every i ≤ n − 1. But this implies an−1 > an−2

and hence an−1 is a peak. A contradiction. Hence, every array has
a peak.

0 1 2 3 4 5 6

a0 > a0 a2 a3 a4 a5 a6

Dr Christian Konrad Peak Finding 4 / 11

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a1 > a0 since
otherwise a0 is a peak. But then a2 > a1 since otherwise a1 is a
peak. Continuing, for the same reason, ai > ai−1 since otherwise
ai−1 is a peak, for every i ≤ n − 1. But this implies an−1 > an−2

and hence an−1 is a peak. A contradiction. Hence, every array has
a peak.

0 1 2 3 4 5 6

a0 > a0 > a1 a3 a4 a5 a6

Dr Christian Konrad Peak Finding 4 / 11

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a1 > a0 since
otherwise a0 is a peak. But then a2 > a1 since otherwise a1 is a
peak. Continuing, for the same reason, ai > ai−1 since otherwise
ai−1 is a peak, for every i ≤ n − 1. But this implies an−1 > an−2

and hence an−1 is a peak. A contradiction. Hence, every array has
a peak.

0 1 2 3 4 5 6

a0 > a0 > a1 > a2 > a3 > a4 > a5

Dr Christian Konrad Peak Finding 4 / 11

Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Every maximum is a peak. (Shorter and immediately convincing!)

Dr Christian Konrad Peak Finding 4 / 11

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

Require: Integer array A of length n
if A[0] ≥ A[1] then

return 0
if A[n − 1] ≥ A[n − 2] then

return n − 1
for i = 1 . . . n − 2 do

if A[i] ≥ A[i − 1] and A[i] ≥ A[i + 1] then
return i

return −1

How often do we look at the array elements? (worst case!)

A[0] and A[n − 1]:

twice

A[1] . . .A[n − 2]: 4 times (at most)

Overall: 2 + 2 + (n − 2) · 4 = 4(n − 1)

Can we do better?!

Dr Christian Konrad Peak Finding 5 / 11

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

Require: Integer array A of length n
if A[0] ≥ A[1] then

return 0
if A[n − 1] ≥ A[n − 2] then

return n − 1
for i = 1 . . . n − 2 do

if A[i] ≥ A[i − 1] and A[i] ≥ A[i + 1] then
return i

return −1

How often do we look at the array elements? (worst case!)

A[0] and A[n − 1]: twice

A[1] . . .A[n − 2]: 4 times (at most)

Overall: 2 + 2 + (n − 2) · 4 = 4(n − 1)

Can we do better?!

Dr Christian Konrad Peak Finding 5 / 11

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

Require: Integer array A of length n
if A[0] ≥ A[1] then

return 0
if A[n − 1] ≥ A[n − 2] then

return n − 1
for i = 1 . . . n − 2 do

if A[i] ≥ A[i − 1] and A[i] ≥ A[i + 1] then
return i

return −1

How often do we look at the array elements? (worst case!)

A[0] and A[n − 1]: twice

A[1] . . .A[n − 2]:

4 times (at most)

Overall: 2 + 2 + (n − 2) · 4 = 4(n − 1)

Can we do better?!

Dr Christian Konrad Peak Finding 5 / 11

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

Require: Integer array A of length n
if A[0] ≥ A[1] then

return 0
if A[n − 1] ≥ A[n − 2] then

return n − 1
for i = 1 . . . n − 2 do

if A[i] ≥ A[i − 1] and A[i] ≥ A[i + 1] then
return i

return −1

How often do we look at the array elements? (worst case!)

A[0] and A[n − 1]: twice

A[1] . . .A[n − 2]: 4 times (at most)

Overall: 2 + 2 + (n − 2) · 4 = 4(n − 1)

Can we do better?!

Dr Christian Konrad Peak Finding 5 / 11

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

Require: Integer array A of length n
if A[0] ≥ A[1] then

return 0
if A[n − 1] ≥ A[n − 2] then

return n − 1
for i = 1 . . . n − 2 do

if A[i] ≥ A[i − 1] and A[i] ≥ A[i + 1] then
return i

return −1

How often do we look at the array elements? (worst case!)

A[0] and A[n − 1]: twice

A[1] . . .A[n − 2]: 4 times (at most)

Overall: 2 + 2 + (n − 2) · 4 = 4(n − 1)

Can we do better?!

Dr Christian Konrad Peak Finding 5 / 11

Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

Require: Integer array A of length n
if A[0] ≥ A[1] then

return 0
if A[n − 1] ≥ A[n − 2] then

return n − 1
for i = 1 . . . n − 2 do

if A[i] ≥ A[i − 1] and A[i] ≥ A[i + 1] then
return i

return −1

How often do we look at the array elements? (worst case!)

A[0] and A[n − 1]: twice

A[1] . . .A[n − 2]: 4 times (at most)

Overall: 2 + 2 + (n − 2) · 4 = 4(n − 1)

Can we do better?!

Dr Christian Konrad Peak Finding 5 / 11

Peak Finding: An even faster Algorithm

Finding Peaks even Faster: Fast-Peak-Finding

1 if A is of length 1 then return 0

2 if A is of length 2 then compare A[0] and A[1] and
return position of larger element

3 if A[⌊n/2⌋] is a peak then return ⌊n/2⌋
4 Otherwise, if A[⌊n/2⌋ − 1] ≥ A[⌊n/2⌋] then

return Fast-Peak-Finding(A[0, ⌊n/2⌋ − 1])

5 else
return ⌊n/2⌋+ 1+

Fast-Peak-Finding(A[⌊n/2⌋+ 1, n − 1])

Comments:

Fast-Peak-Finding is recursive (it calls itself)

⌊x⌋ is the floor function (⌈x⌉: ceiling)

Dr Christian Konrad Peak Finding 6 / 11

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

Dr Christian Konrad Peak Finding 7 / 11

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

Check whether A[⌊n/2⌋] = A[⌊16/2⌋] = A[8] is a peak

Dr Christian Konrad Peak Finding 7 / 11

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

If A[7] ≥ A[8] then return Fast-Peak-Finding(A[0, 7])

Dr Christian Konrad Peak Finding 7 / 11

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

Length of subarray is 8

Dr Christian Konrad Peak Finding 7 / 11

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

Check whether A[⌊n/2⌋] = A[⌊8/2⌋] = A[4] is a peak

Dr Christian Konrad Peak Finding 7 / 11

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

If A[3] ≥ A[4] then return Fast-Peak-Finding(A[0, 3])

Dr Christian Konrad Peak Finding 7 / 11

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

Length of subarray is 4

Dr Christian Konrad Peak Finding 7 / 11

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

Check whether A[⌊n/2⌋] = A[⌊4/2⌋] = A[2] is a peak

Dr Christian Konrad Peak Finding 7 / 11

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

If A[1] ≥ A[2] then return Fast-Peak-Finding(A[0, 1])

Dr Christian Konrad Peak Finding 7 / 11

Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 7 22 47 36 33 31 30 25 21 20 15 7 4 10 22

Else return Fast-Peak-Finding(A[3]), which returns 3

Dr Christian Konrad Peak Finding 7 / 11

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

Without the recursive calls, the algorithm looks at the array
elements at most 5 times

Let R(n) be the number of calls to Fast-Peak-Finding
when the input array is of length n. Then:

R(1) = R(2) = 1

R(n) ≤ R(⌊n/2⌋) + 1 , for n ≥ 3 .

Solving the recurrence (see lecture on recurrences):

R(n) ≤ R(⌊n/2⌋) + 1 ≤ R(n/2) + 1 = R(⌊n/4⌋) + 2

≤ R(n/4) + 2 = · · · ≤ ⌈log n⌉ .

Hence, we look at most at 5⌈log n⌉ array elements!

Dr Christian Konrad Peak Finding 8 / 11

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

Without the recursive calls, the algorithm looks at the array
elements at most 5 times

Let R(n) be the number of calls to Fast-Peak-Finding
when the input array is of length n. Then:

R(1) = R(2) = 1

R(n) ≤ R(⌊n/2⌋) + 1 , for n ≥ 3 .

Solving the recurrence (see lecture on recurrences):

R(n) ≤ R(⌊n/2⌋) + 1 ≤ R(n/2) + 1 = R(⌊n/4⌋) + 2

≤ R(n/4) + 2 = · · · ≤ ⌈log n⌉ .

Hence, we look at most at 5⌈log n⌉ array elements!

Dr Christian Konrad Peak Finding 8 / 11

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

Without the recursive calls, the algorithm looks at the array
elements at most 5 times

Let R(n) be the number of calls to Fast-Peak-Finding
when the input array is of length n. Then:

R(1) = R(2) = 1

R(n) ≤ R(⌊n/2⌋) + 1 , for n ≥ 3 .

Solving the recurrence (see lecture on recurrences):

R(n) ≤ R(⌊n/2⌋) + 1 ≤ R(n/2) + 1 = R(⌊n/4⌋) + 2

≤ R(n/4) + 2 = · · · ≤ ⌈log n⌉ .

Hence, we look at most at 5⌈log n⌉ array elements!

Dr Christian Konrad Peak Finding 8 / 11

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

Without the recursive calls, the algorithm looks at the array
elements at most 5 times

Let R(n) be the number of calls to Fast-Peak-Finding
when the input array is of length n. Then:

R(1) = R(2) = 1

R(n) ≤

R(⌊n/2⌋) + 1 , for n ≥ 3 .

Solving the recurrence (see lecture on recurrences):

R(n) ≤ R(⌊n/2⌋) + 1 ≤ R(n/2) + 1 = R(⌊n/4⌋) + 2

≤ R(n/4) + 2 = · · · ≤ ⌈log n⌉ .

Hence, we look at most at 5⌈log n⌉ array elements!

Dr Christian Konrad Peak Finding 8 / 11

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

Without the recursive calls, the algorithm looks at the array
elements at most 5 times

Let R(n) be the number of calls to Fast-Peak-Finding
when the input array is of length n. Then:

R(1) = R(2) = 1

R(n) ≤ R(⌊n/2⌋) + 1 , for n ≥ 3 .

Solving the recurrence (see lecture on recurrences):

R(n) ≤ R(⌊n/2⌋) + 1 ≤ R(n/2) + 1 = R(⌊n/4⌋) + 2

≤ R(n/4) + 2 = · · · ≤ ⌈log n⌉ .

Hence, we look at most at 5⌈log n⌉ array elements!

Dr Christian Konrad Peak Finding 8 / 11

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

Without the recursive calls, the algorithm looks at the array
elements at most 5 times

Let R(n) be the number of calls to Fast-Peak-Finding
when the input array is of length n. Then:

R(1) = R(2) = 1

R(n) ≤ R(⌊n/2⌋) + 1 , for n ≥ 3 .

Solving the recurrence (see lecture on recurrences):

R(n) ≤ R(⌊n/2⌋) + 1 ≤ R(n/2) + 1 = R(⌊n/4⌋) + 2

≤ R(n/4) + 2 = · · · ≤ ⌈log n⌉ .

Hence, we look at most at 5⌈log n⌉ array elements!

Dr Christian Konrad Peak Finding 8 / 11

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

Without the recursive calls, the algorithm looks at the array
elements at most 5 times

Let R(n) be the number of calls to Fast-Peak-Finding
when the input array is of length n. Then:

R(1) = R(2) = 1

R(n) ≤ R(⌊n/2⌋) + 1 , for n ≥ 3 .

Solving the recurrence (see lecture on recurrences):

R(n) ≤ R(⌊n/2⌋) + 1 ≤ R(n/2) + 1 = R(⌊n/4⌋) + 2

≤ R(n/4) + 2 = · · · ≤ ⌈log n⌉ .

Hence, we look at most at 5⌈log n⌉ array elements!

Dr Christian Konrad Peak Finding 8 / 11

Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

Without the recursive calls, the algorithm looks at the array
elements at most 5 times

Let R(n) be the number of calls to Fast-Peak-Finding
when the input array is of length n. Then:

R(1) = R(2) = 1

R(n) ≤ R(⌊n/2⌋) + 1 , for n ≥ 3 .

Solving the recurrence (see lecture on recurrences):

R(n) ≤ R(⌊n/2⌋) + 1 ≤ R(n/2) + 1 = R(⌊n/4⌋) + 2

≤ R(n/4) + 2 = · · · ≤ ⌈log n⌉ .

Hence, we look at most at 5⌈log n⌉ array elements!

Dr Christian Konrad Peak Finding 8 / 11

Peak Finding: Correctness

Why is the Algorithm correct?!

1 if A is of length 1 then return 0

2 if A is of length 2 then compare A[0] and A[1] and
return position of larger element

3 if A[⌊n/2⌋] is a peak then return ⌊n/2⌋
4 Otherwise, if A[⌊n/2⌋ − 1] ≥ A[⌊n/2⌋] then

return Fast-Peak-Finding(A[0, ⌊n/2⌋ − 1])

5 else
return ⌊n/2⌋+ 1+

Fast-Peak-Finding(A[⌊n/2⌋+ 1, n − 1])

Steps 1,2,3
are clearly
correct

Why is step 4 correct? (step 5 is similar)

Need to prove: peak in A[0, ⌊n/2⌋ − 1] is a peak in A

This is trivially true for every position i < ⌊n/2⌋ − 1, since
both cells adjacent to A[i] are also contained in A[0, ⌊n/2⌋−1]

Critical case: ⌊n/2⌋ − 1 is a peak in A[0, ⌊n/2⌋ − 1]

Dr Christian Konrad Peak Finding 9 / 11

Peak Finding: Correctness

Why is the Algorithm correct?!

1 if A is of length 1 then return 0

2 if A is of length 2 then compare A[0] and A[1] and
return position of larger element

3 if A[⌊n/2⌋] is a peak then return ⌊n/2⌋
4 Otherwise, if A[⌊n/2⌋ − 1] ≥ A[⌊n/2⌋] then

return Fast-Peak-Finding(A[0, ⌊n/2⌋ − 1])

5 else
return ⌊n/2⌋+ 1+

Fast-Peak-Finding(A[⌊n/2⌋+ 1, n − 1])

Steps 1,2,3
are clearly
correct

Why is step 4 correct? (step 5 is similar)

Need to prove: peak in A[0, ⌊n/2⌋ − 1] is a peak in A

This is trivially true for every position i < ⌊n/2⌋ − 1, since
both cells adjacent to A[i] are also contained in A[0, ⌊n/2⌋−1]

Critical case: ⌊n/2⌋ − 1 is a peak in A[0, ⌊n/2⌋ − 1]

Dr Christian Konrad Peak Finding 9 / 11

Peak Finding: Correctness

Why is the Algorithm correct?!

1 if A is of length 1 then return 0

2 if A is of length 2 then compare A[0] and A[1] and
return position of larger element

3 if A[⌊n/2⌋] is a peak then return ⌊n/2⌋
4 Otherwise, if A[⌊n/2⌋ − 1] ≥ A[⌊n/2⌋] then

return Fast-Peak-Finding(A[0, ⌊n/2⌋ − 1])

5 else
return ⌊n/2⌋+ 1+

Fast-Peak-Finding(A[⌊n/2⌋+ 1, n − 1])

Steps 1,2,3
are clearly
correct

Why is step 4 correct? (step 5 is similar)

Need to prove: peak in A[0, ⌊n/2⌋ − 1] is a peak in A

This is trivially true for every position i < ⌊n/2⌋ − 1, since
both cells adjacent to A[i] are also contained in A[0, ⌊n/2⌋−1]

Critical case: ⌊n/2⌋ − 1 is a peak in A[0, ⌊n/2⌋ − 1]

Dr Christian Konrad Peak Finding 9 / 11

Peak Finding: Correctness (2)

Why is the Algorithm correct?!

1 if A is of length 1 then return 0

2 if A is of length 2 then compare A[0] and A[1] and
return position of larger element

3 if A[⌊n/2⌋] is a peak then return ⌊n/2⌋
4 Otherwise, if A[⌊n/2⌋ − 1] ≥ A[⌊n/2⌋] then

return Fast-Peak-Finding(A[0, ⌊n/2⌋ − 1])

5 else
return ⌊n/2⌋+ 1+

Fast-Peak-Finding(A[⌊n/2⌋+ 1, n − 1])

Steps 1,2,3
are clearly
correct

Critical case: ⌊n/2⌋ − 1 is a peak in A[0, ⌊n/2⌋ − 1]

Need to guarantee that A[⌊n/2⌋] ≤ A[⌊n/2⌋ − 1] since
otherwise ⌊n/2⌋ − 1 would not be a peak

This, however, follows from the condition in step 4!

Dr Christian Konrad Peak Finding 10 / 11

Peak Finding: Runtime Comparison

4(n − 1) versus 5 log n

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

number of accesses to the array

Fast-Peak-Finding: 5 log(n)
Slow Peak Finding: 4(n-1)

Conclusion: 5 log n is so much better than 4(n − 1)!

Dr Christian Konrad Peak Finding 11 / 11

Peak Finding: Runtime Comparison

4(n − 1) versus 5 log n

 0

 50

 100

 150

 200

 250

 300

 350

 400

 10 20 30 40 50 60 70 80 90 100

number of accesses to the array

Fast-Peak-Finding: 5 log(n)
Slow Peak Finding: 4(n-1)

Conclusion: 5 log n is so much better than 4(n − 1)!

Dr Christian Konrad Peak Finding 11 / 11

Peak Finding: Runtime Comparison

4(n − 1) versus 5 log n

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800 900 1000

number of accesses to the array

Fast-Peak-Finding: 5 log(n)
Slow Peak Finding: 4(n-1)

Conclusion: 5 log n is so much better than 4(n − 1)!

Dr Christian Konrad Peak Finding 11 / 11

Peak Finding: Runtime Comparison

4(n − 1) versus 5 log n

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800 900 1000

number of accesses to the array

Fast-Peak-Finding: 5 log(n)
Slow Peak Finding: 4(n-1)

Conclusion: 5 log n is so much better than 4(n − 1)!

Dr Christian Konrad Peak Finding 11 / 11

