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Peak Finding

Let A= ag,a1,...,an—1 be an array of integers of length n
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Integer a; is a peak if adjacent integers are not larger than a;
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Peak Finding

Let A= ag,a1,...,an—1 be an array of integers of length n

0 1 2 3 4 5 6 7 8 9

(2o a1 [ 23 [ 4 225 [ [ 20 a5

Definition: (Peak)
Integer a; is a peak if adjacent integers are not larger than a;

Example:

'4]3]9]10]14]8]|7]2]2]2
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Peak Finding: Simple Algorithm

Problem PEAK FINDING: Write algorithm with properties:
© Input: An integer array of length n
@ Output: A position 0 < i < n—1 such that a; is a peak
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Peak Finding: Simple Algorithm

Problem PEAK FINDING: Write algorithm with properties:
© Input: An integer array of length n
@ Output: A position 0 < i < n—1 such that a; is a peak

int peak(int *A, int len) {
if (A[0] >= A[1])
return 0;
if (A[len—1] >= A[len —2])
return len —1;

for(int i=1; i < len—1; i=i+1) {
if (A[i] >= A[i—1] && A[i] >= A[i+1])

return i;
}

return —1;

C++ code
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Peak Finding: Simple Algorithm

Problem PEAK FINDING: Write algorithm with properties:
© Input: An integer array of length n
@ Output: A position 0 < i < n—1 such that a; is a peak

Require: Integer array A of length n
if A[0] > A[1] then
return 0
if Al[n—1] > A[n— 2] then
return n—1
fori=1...n—2do
if A[i] > A[i — 1] and A[i] > A[i + 1] then
return
return —1

Pseudo code
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Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?
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Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Every integer array has at least one peak.
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Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a; > ag since
otherwise ag is a peak. But then a, > a; since otherwise a; is a
peak. Continuing, for the same reason, a; > a;_1 since otherwise
aj_1 is a peak, for every i < n— 1. But this implies a,_1 > a,_2
and hence a,_1 is a peak. A contradiction. Hence, every array has
a peak. ]
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Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a; > ag since
otherwise ag is a peak. But then a, > a; since otherwise a; is a
peak. Continuing, for the same reason, a; > a;_1 since otherwise
aj_1 is a peak, for every i < n— 1. But this implies a,_1 > a,_2
and hence a,_1 is a peak. A contradiction. Hence, every array has
a peak. ]
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Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a; > ag since
otherwise ag is a peak. But then a, > a; since otherwise a; is a
peak. Continuing, for the same reason, a; > a;_1 since otherwise
aj_1 is a peak, for every i < n— 1. But this implies a,_1 > a,_2
and hence a,_1 is a peak. A contradiction. Hence, every array has

a peak.
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Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.

Let A be an integer array of length n. Suppose for the sake of a
contradiction that A does not have a peak. Then a; > ag since
otherwise ag is a peak. But then a, > a; since otherwise a; is a
peak. Continuing, for the same reason, a; > a;_1 since otherwise
aj_1 is a peak, for every i < n— 1. But this implies a,_1 > a,_2
and hence a,_1 is a peak. A contradiction. Hence, every array has
a peak. ]

0 1 2 3 4 5 6

a|>ap|>ai1|>ax|>az|>as|> as

Dr Christian Konrad Peak Finding 4/ 11



Peak Finding: Problem well-defined?

Is Peak Finding well defined? Does every array have a peak?

Lemma

Every integer array has at least one peak.

Proof.
Every maximum is a peak. (Shorter and immediately convincing!)
O
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Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

Require: Integer array A of length n
if A[0] > A[1] then
return 0
if Al[n—1]> A[n— 2] then
return n—1
fori=1...n—2do
if A[i] > A[i — 1] and A[i] > A[i + 1] then
return
return —1

How often do we look at the array elements? (worst case!)
e A[0] and A[n —1]:
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Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

Require: Integer array A of length n
if A[0] > A[1] then
return 0
if Al[n—1]> A[n— 2] then
return n—1
fori=1...n—2do
if A[i] > A[i — 1] and A[i] > A[i + 1] then
return
return —1

How often do we look at the array elements? (worst case!)
e A[0] and A[n — 1]: twice
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Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

Require: Integer array A of length n
if A[0] > A[1] then
return 0
if Al[n—1]> A[n— 2] then
return n—1
fori=1...n—2do
if A[i] > A[i — 1] and A[i] > A[i + 1] then
return
return —1

How often do we look at the array elements? (worst case!)
e A[0] and A[n — 1]: twice
o A[l]...Aln—2]
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Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

Require: Integer array A of length n
if A[0] > A[1] then
return 0
if Al[n—1]> A[n— 2] then
return n—1
fori=1...n—2do
if A[i] > A[i — 1] and A[i] > A[i + 1] then
return
return —1

How often do we look at the array elements? (worst case!)
e A[0] and A[n — 1]: twice
e A[l] ... Aln—2]: 4 times (at most)
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Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

Require: Integer array A of length n
if A[0] > A[1] then
return 0
if Al[n—1]> A[n— 2] then
return n—1
fori=1...n—2do
if A[i] > A[i — 1] and A[i] > A[i + 1] then
return
return —1

How often do we look at the array elements? (worst case!)
e A[0] and A[n — 1]: twice
e A[l] ... Aln—2]: 4 times (at most)
@ Overall: 242+ (n—2)-4=4(n—-1)
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Peak Finding: How fast is the Simple Algorithm?

How fast is our Algorithm?

Require: Integer array A of length n
if A[0] > A[1] then
return 0
if Al[n—1]> A[n— 2] then
return n—1
fori=1...n—2do
if A[i] > A[i — 1] and A[i] > A[i + 1] then
return
return —1

How often do we look at the array elements? (worst case!)
e A[0] and A[n — 1]: twice Can we do better?!
e A[l] ... Aln—2]: 4 times (at most)
@ Overall: 242+ (n—2)-4=4(n—-1)
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Peak Finding: An even faster Algorithm

Finding Peaks even Faster: FAST-PEAK-FINDING

@ if Ais of length 1 then return 0
@ if Ais of length 2 then compare A[0] and A[1] and
return position of larger element
@ if A[|n/2]] is a peak then return |n/2]
Q Otherwise, if A[|n/2] — 1] > A[|n/2]] then
return FAST-PEAK-FINDING(A[O, [ n/2] — 1])

Q else
return [n/2| + 1+
FAST-PEAK-FINDING(A[|n/2] +1,n—1])

Comments:
o FAST-PEAK-FINDING is recursive (it calls itself)

@ |x]| is the floor function ([x]: ceiling)
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Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13]7]22]47]36[33]31]30]25]21]20]15]7[4]10]22]
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Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13]7[22]47]36[33]31]30]25]21]20]15]7[4]10]22]

Check whether A[[n/2]|] = A[|16/2]] = A[8] is a peak
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Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13]7[22]47]36[33]31]30]25]21]20]15]7[4]10]22]

If A[7] > A[8] then return FAST-PEAK-FINDING(A[O,7])
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Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[3]7]22]47]36]33]31]30]25]21]20]15]7[4]10]22]

Length of subarray is 8
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Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[3]7]22]47]36]33]31]30]25]21]20]15]7[4]10]22]

Check whether A[|n/2]|] = A[|8/2]] = A[4] is a peak
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Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[3]7]22]47]36]33]31]30]25]21]20]15]7[4]10]22]

If A[3] > A[4] then return FAST-PEAK-FINDING(A[O, 3])
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Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13]7]22]47]36]33]31]30]25]21]20]15] 7|4 ]10]22]

Length of subarray is 4
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Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13]7]22]47]36]33]31]30]25]21]20]15] 7|4 ]10]22]

Check whether A[|n/2]|] = A[|4/2]] = A[2] is a peak
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Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13]7]22]47]36]33]31]30]25]21]20]15] 7|4 ]10]22]

If A[1] > A[2] then return FAST-PEAK-FINDING(A[O, 1])
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Peak Finding: Example

Example:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13]7]22]47]36]33]31]30]25]21]20]15] 7|4 ]10]22]

Else return FAST-PEAK-FINDING(A[3]), which returns 3
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Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?
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Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

@ Without the recursive calls, the algorithm looks at the array
elements at most 5 times
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Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

@ Without the recursive calls, the algorithm looks at the array
elements at most 5 times

o Let R(n) be the number of calls to FAST-PEAK-FINDING
when the input array is of length n. Then:

R(1) = R(2)=1
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Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

@ Without the recursive calls, the algorithm looks at the array
elements at most 5 times

o Let R(n) be the number of calls to FAST-PEAK-FINDING
when the input array is of length n. Then:

R(1) = R(2)=1
R(n) <
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Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

@ Without the recursive calls, the algorithm looks at the array
elements at most 5 times

o Let R(n) be the number of calls to FAST-PEAK-FINDING
when the input array is of length n. Then:
R(1) = R(2)=1
R(n) R(|n/2])+1, forn>3.

IN
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Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

@ Without the recursive calls, the algorithm looks at the array
elements at most 5 times

o Let R(n) be the number of calls to FAST-PEAK-FINDING
when the input array is of length n. Then:

R(1) = R(2)=1
R(n) < R(ln/2])

@ Solving the recurrence (see lecture on recurrences):

+1,forn>3.

Dr Christian Konrad Peak Finding 8/ 11



Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

@ Without the recursive calls, the algorithm looks at the array
elements at most 5 times

o Let R(n) be the number of calls to FAST-PEAK-FINDING
when the input array is of length n. Then:

R(
R(

@ Solving the recurrence (see lecture on recurrences):

1) = R(2)=1
n) < R(|n/2])+1, forn>3.

R(n) R(ln/2]) +1 < R(n/2) + 1= R([n/4]) +2

<
< R(n/4)+2=---<[logn] .
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Peak Finding: How fast is the Improved Algorithm?

How often does the Algorithm look at the array elements?

@ Without the recursive calls, the algorithm looks at the array
elements at most 5 times

o Let R(n) be the number of calls to FAST-PEAK-FINDING
when the input array is of length n. Then:

R(
R(

@ Solving the recurrence (see lecture on recurrences):

1) = R(2)=1
n) < R(|n/2])+1, forn>3.

R(n) R(ln/2]) +1 < R(n/2) + 1= R([n/4]) +2

<
< R(n/4)+2=---<[logn] .

@ Hence, we look at most at 5[log n] array elements!
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Peak Finding: Correctness

Why is the Algorithm correct?!
@ if Ais of length 1 then return 0

@ if Ais of length 2 then compare A[0] and A[1] and
return position of larger element

Steps 1,2,3 ) _
are clearly Q if A[Ln/.QJ]'ls a peak then return |n/2|
correct © Otherwise, if A[|n/2] — 1] > A[|n/2]] then

return FAST-PEAK-FINDING(A[O, |n/2| — 1])
Q else

return |n/2| + 1+
FAST-PEAK-FINDING(A[|n/2] 4+ 1, n — 1])

Why is step 4 correct? (step 5 is similar)
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Peak Finding: Correctness

Why is the Algorithm correct?!

Steps 1,2,3
are clearly
correct

@ if Ais of length 1 then return 0
@ if Ais of length 2 then compare A[0] and A[1] and

return position of larger element
© if A[[n/2]] is a peak then return |n/2]
© Otherwise, if A[|n/2] — 1] > A[|n/2]] then
return FAST-PEAK-FINDING(A[O, |n/2| — 1])
Q else
return |n/2| + 1+
FAST-PEAK-FINDING(A[|n/2] 4+ 1, n — 1])

Why is step 4 correct? (step 5 is similar)
o Need to prove: peak in A[0, |n/2] — 1] is a peak in A

Dr Christian Konrad Peak Finding 9/ 11



Peak Finding: Correctness

Why is the Algorithm correct?!
@ if Ais of length 1 then return 0

@ if Ais of length 2 then compare A[0] and A[1] and
return position of larger element

Steps 1,2,3 ) _
are clearly Q if A[Ln/.ZJ]'ls a peak then return |n/2|
correct © Otherwise, if A[|n/2] — 1] > A[|n/2]] then

return FAST-PEAK-FINDING(A[O, |n/2| — 1])
Q else

return |n/2| + 1+
FAST-PEAK-FINDING(A[|n/2] 4+ 1, n — 1])

Why is step 4 correct? (step 5 is similar)
o Need to prove: peak in A[0, |n/2] — 1] is a peak in A
e This is trivially true for every position i < |n/2| — 1, since
both cells adjacent to A[i] are also contained in A[0, |n/2] —1]
o Critical case: |n/2| — 1 is a peak in A[0, |[n/2| — 1]
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Peak Finding: Correctness (2)

Why is the Algorithm correct?!
@ if Ais of length 1 then return 0

@ if Ais of length 2 then compare A[0] and A[1] and
return position of larger element

Steps 1,2,3 ) _
are clearly Qif A[Ln/.2j]'ls a peak then return |n/2|
correct © Otherwise, if A[[n/2] —1] > A[[n/2]] then

return FAST-PEAK-FINDING(A[O, | n/2] — 1])
Q else

return [n/2| + 1+
FAST-PEAK-FINDING(A[|n/2] + 1, n — 1])

o Critical case: |n/2] — 1 is a peak in A[0, [n/2] —1]
@ Need to guarantee that A[|n/2]|] < A[|n/2] — 1] since
otherwise [n/2| — 1 would not be a peak

@ This, however, follows from the condition in step 4! O
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Peak Finding: Runtime Comparison
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Peak Finding: Runtime Comparison

4(n — 1) versus 5logn
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Peak Finding: Runtime Comparison

4(n — 1) versus 5logn
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Peak Finding: Runtime Comparison

4(n — 1) versus 5logn

4000 T T T T

I Fast—l;eak-Fintlding: 5 Ilog(n) I

3500 - Slow Peak Finding: 4(n-1)

3000 - B
2500 - ,
2000 - B
1500 ,
1000 - B

500 -~ B

0 ) ) ) ) . . . . .
0 100 200 300 400 500 600 700 800 900 1000

number of accesses to the array

Conclusion: 5log n is so much better than 4(n — 1)!
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