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Runtime of Algorithms

Runtime of an Algorithm

Function f : N → N that maps the input length n ∈ N to the
number of simple/unit/elementary operations (worst case,
best case, average case, runtime on a specific input, . . . )

The number of array accesses in Peak Finding represents
the number of unit operations very well

Which runtime is better?

4(n − 1) (simple peak finding algorithm)

5 log n (fast peak finding algorithm)

0.1n2

n log(0.5n)

0.01 · 2n

Answer: It depends... But there is a favourite
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Runtime Comparisons
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0.1n2 ≤ 0.01 · 2n ≤ 5 log n ≤ n log(n/2) ≤ 4(n − 1)
(n = 10)
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Order Functions Disregarding Constants

Aim: We would like to sort algorithms according to their runtime

Is algorithm A faster than algorithm B?

Asymptotic Complexity

For large enough n, constants seem to matter less

For small values of n, most algorithms are fast anyway
(Attention: this is often but not always true!)

Solution: Consider asymptotic behavior of functions

A function f (n) grows asymptotically at least as fast as a function
g(n) if there exists an n0 ∈ N such that for every n ≥ n0 it holds:

f (n) ≥ g(n) .
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Example: f grows at least as fast as g

f(n)
g(n)
n0
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Example 1

Example: f (n) = 1
2n

2, g(n) = 3n

Then f (n) grows asymptotically at least as fast as g(n).

Proof: Find values of n for which the following holds:

1

2
n2 ≥ 3n ⇒
n ≥ 6 .

Thus, we can chose any n0 ≥ 6.
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Example 2

Example: f (n) = 2n3, g(n) = 1
2 · 2n

Then g(n) grows asymptotically at least as fast as f (n).

Proof: Find values of n for which the following holds:

1

2
· 2n ≥ 2n3

2n−1 ≥ 23 log n+1 (using n = 2log n)

n − 1 ≥ 3 log n + 1

n ≥ 3 log n + 2

This holds for every n ≥ 16 (which follows from the racetrack
principle). Thus, we chose any n0 ≥ 16.
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The Racetrack Principle

Racetrack Principle: Let f , g be functions, k an integer and
suppose that the following holds:

1 f (k) ≥ g(k) and

2 f ′(n) ≥ g ′(n) for every n ≥ k .

Then for every n ≥ k , it holds that f (n) ≥ g(n).

Example: n ≥ 3 log n + 2 holds for every n ≥ 16

n ≥ 3 log n + 2 holds for n = 16

We have: (n)′ = 1 and (3 log n + 2)′ = 3
n ln 2 < 1

2 for every
n ≥ 16. The result follows.
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Order Functions by Asymptotic Growth

If ≤ means grows asymptotically at least as fast as then we get:

5 log n ≤ 4(n − 1) ≤ n log(n/2) ≤ 0.1n2 ≤ 0.01 · 2n
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