Why Constants Matter Less COMS10018 - Algorithms

Dr Christian Konrad

Runtime of an Algorithm

Runtime of an Algorithm

Function f : N → N that maps the input length n ∈ N to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, ...)

Runtime of an Algorithm

- Function f : N → N that maps the input length n ∈ N to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, ...)
- The number of array accesses in PEAK FINDING represents the number of unit operations very well

Runtime of an Algorithm

- Function f : N → N that maps the input length n ∈ N to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, ...)
- The number of array accesses in PEAK FINDING represents the number of unit operations very well

Which runtime is better?

- 4(n-1) (simple peak finding algorithm)
- 5 log *n* (fast peak finding algorithm)

Runtime of an Algorithm

- Function f : N → N that maps the input length n ∈ N to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, ...)
- The number of array accesses in PEAK FINDING represents the number of unit operations very well

Which runtime is better?

- 4(n-1) (simple peak finding algorithm)
- 5 log *n* (fast peak finding algorithm)
- 0.1*n*²
- $n \log(0.5n)$
- 0.01 · 2ⁿ

Runtime of an Algorithm

- Function f : N → N that maps the input length n ∈ N to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, ...)
- The number of array accesses in PEAK FINDING represents the number of unit operations very well

Which runtime is better?

- 4(n-1) (simple peak finding algorithm)
- 5 log *n* (fast peak finding algorithm)
- 0.1*n*²
- $n \log(0.5n)$
- 0.01 · 2ⁿ

Answer:

Runtime of an Algorithm

- Function f : N → N that maps the input length n ∈ N to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, ...)
- The number of array accesses in PEAK FINDING represents the number of unit operations very well

Which runtime is better?

- 4(n-1) (simple peak finding algorithm)
- 5 log *n* (fast peak finding algorithm)
- 0.1*n*²
- $n \log(0.5n)$
- 0.01 · 2ⁿ

Answer: It depends...

Runtime of an Algorithm

- Function f : N → N that maps the input length n ∈ N to the number of simple/unit/elementary operations (worst case, best case, average case, runtime on a specific input, ...)
- The number of array accesses in PEAK FINDING represents the number of unit operations very well

Which runtime is better?

- 4(n-1) (simple peak finding algorithm)
- 5 log *n* (fast peak finding algorithm)
- 0.1*n*²
- $n \log(0.5n)$
- 0.01 · 2ⁿ

Answer: It depends... But there is a favourite

Aim: We would like to sort algorithms according to their runtime

Is algorithm A faster than algorithm B?

Aim: We would like to sort algorithms according to their runtime

Is algorithm A faster than algorithm B?

Asymptotic Complexity

Aim: We would like to sort algorithms according to their runtime

Is algorithm A faster than algorithm B?

Asymptotic Complexity

• For large enough *n*, constants seem to matter less

Aim: We would like to sort algorithms according to their runtime

Is algorithm A faster than algorithm B?

Asymptotic Complexity

- For large enough *n*, constants seem to matter less
- For small values of *n*, most algorithms are fast anyway

Aim: We would like to sort algorithms according to their runtime

Is algorithm A faster than algorithm B?

Asymptotic Complexity

- For large enough *n*, constants seem to matter less
- For small values of *n*, most algorithms are fast anyway (Attention: this is often but not always true!)

Aim: We would like to sort algorithms according to their runtime

Is algorithm A faster than algorithm B?

Asymptotic Complexity

- For large enough *n*, constants seem to matter less
- For small values of *n*, most algorithms are fast anyway (Attention: this is often but not always true!)

Solution: Consider asymptotic behavior of functions

Aim: We would like to sort algorithms according to their runtime

Is algorithm A faster than algorithm B?

Asymptotic Complexity

- For large enough *n*, constants seem to matter less
- For small values of *n*, most algorithms are fast anyway (Attention: this is often but not always true!)

Solution: Consider asymptotic behavior of functions A function f(n) grows asymptotically at least as fast as a function g(n) if there exists an $n_0 \in \mathbb{N}$ such that for every $n \ge n_0$ it holds:

 $f(n) \ge g(n)$.

Example: f grows at least as fast as g

Example: $f(n) = \frac{1}{2}n^2$, g(n) = 3n

Example: $f(n) = \frac{1}{2}n^2$, g(n) = 3n

Then f(n) grows asymptotically at least as fast as g(n).

Proof:

$$\frac{1}{2}n^2 \geq 3n$$

$$\frac{1}{2}n^2 \geq 3n \Rightarrow$$
$$n \geq 6.$$

Proof: Find values of *n* for which the following holds:

$$\frac{1}{2}n^2 \geq 3n \Rightarrow$$
$$n \geq 6.$$

Thus, we can chose any $n_0 \ge 6$.

Example:
$$f(n) = 2n^3$$
, $g(n) = \frac{1}{2} \cdot 2^n$

Example:
$$f(n) = 2n^3$$
, $g(n) = \frac{1}{2} \cdot 2^n$

Then g(n) grows asymptotically at least as fast as f(n).

Proof:

$$\frac{1}{2} \cdot 2^n \geq 2n^3$$

Proof: Find values of *n* for which the following holds:

$$\frac{1}{2} \cdot 2^{n} \geq 2n^{3}$$

$$2^{n-1} \geq 2^{3\log n+1} \quad (\text{using } n = 2^{\log n})$$

Proof: Find values of *n* for which the following holds:

$$\frac{1}{2} \cdot 2^n \geq 2n^3$$

$$2^{n-1} \geq 2^{3\log n+1} \quad (\text{using } n = 2^{\log n})$$

$$n-1 \geq 3\log n+1$$

Proof: Find values of *n* for which the following holds:

$$\frac{1}{2} \cdot 2^n \geq 2n^3$$

$$2^{n-1} \geq 2^{3\log n+1} \quad (\text{using } n = 2^{\log n})$$

$$n-1 \geq 3\log n+1$$

$$n \geq 3\log n+2$$

Proof: Find values of *n* for which the following holds:

$$\frac{1}{2} \cdot 2^n \geq 2n^3$$

$$2^{n-1} \geq 2^{3\log n+1} \quad (\text{using } n = 2^{\log n})$$

$$n-1 \geq 3\log n+1$$

$$n \geq 3\log n+2$$

This holds for every $n \ge 16$ (which follows from the *racetrack principle*). Thus, we chose any $n_0 \ge 16$.

• $f(k) \ge g(k)$ and

3
$$f'(n) \ge g'(n)$$
 for every $n \ge k$

Then for every $n \ge k$, it holds that $f(n) \ge g(n)$.

• $f(k) \geq g(k)$ and

2 $f'(n) \ge g'(n)$ for every $n \ge k$.

Then for every $n \ge k$, it holds that $f(n) \ge g(n)$.

• $f(k) \ge g(k)$ and • $f'(n) \ge g'(n)$ for every $n \ge k$.

Then for every $n \ge k$, it holds that $f(n) \ge g(n)$.

Example: $n \ge 3 \log n + 2$ holds for every $n \ge 16$

• $n \ge 3 \log n + 2$ holds for n = 16

1 $f(k) \ge g(k)$ and 2 $f'(n) \ge g'(n)$ for every $n \ge k$. Then for every $n \ge k$, it holds that $f(n) \ge g(n)$.

Example: $n \ge 3 \log n + 2$ holds for every $n \ge 16$

- $n \ge 3 \log n + 2$ holds for n = 16
- We have: (n)' =

• $f(k) \ge g(k)$ and • $f'(n) \ge g'(n)$ for every $n \ge k$.

Then for every $n \ge k$, it holds that $f(n) \ge g(n)$.

- $n \ge 3 \log n + 2$ holds for n = 16
- We have: (n)' = 1

• $f(k) \ge g(k)$ and • $f'(n) \ge g'(n)$ for every $n \ge k$.

Then for every $n \ge k$, it holds that $f(n) \ge g(n)$.

- $n \ge 3 \log n + 2$ holds for n = 16
- We have: (n)' = 1 and $(3 \log n + 2)' =$

1 $f(k) \ge g(k)$ and 2 $f'(n) \ge g'(n)$ for every $n \ge k$. Then for every $n \ge k$, it holds that $f(n) \ge g(n)$.

- $n \ge 3 \log n + 2$ holds for n = 16
- We have: (n)' = 1 and $(3 \log n + 2)' = \frac{3}{n \ln 2}$

• $f(k) \ge g(k)$ and

3
$$f'(n) \ge g'(n)$$
 for every $n \ge k$

Then for every $n \ge k$, it holds that $f(n) \ge g(n)$.

- $n \ge 3 \log n + 2$ holds for n = 16
- We have: (n)' = 1 and $(3 \log n + 2)' = \frac{3}{n \ln 2} < \frac{1}{2}$ for every $n \ge 16$. The result follows.

If \leq means grows asymptotically at least as fast as then we get: $5 \log n \leq 4(n-1) \leq n \log(n/2) \leq 0.1n^2 \leq 0.01 \cdot 2^n$