Big-O Notation COMS10018 - Algorithms

Dr Christian Konrad

Definition: O-notation ("Big O") Let $g(n)$ be a function. Then $O(g(n))$ is the set of functions: $O(g(n)) = \{f(n) : \text{There exist positive constants } c \text{ and } n_0\}$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Meaning: $f(n) \in O(g(n))$: "g grows asymptotically at least as fast as f up to constants"

O-Notation: Example

O-Notation: Example

Recall:

 $O(g(n)) = \{f(n) :$ There exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Exercises:

$$
\bullet\ 100n \stackrel{?}{\in} O(n)
$$

Recall:

 $O(g(n)) = \{f(n) :$ There exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Exercises:

•
$$
100n \stackrel{?}{\in} O(n)
$$
 Yes, chose $c = 100, n_0 = 1$

$$
4/9
$$

Recall:

 $O(g(n)) = \{f(n) : \text{There exist positive constants } c \text{ and } n_0\}$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Exercises:

 $100n \stackrel{?}{\in} O(n)$ Yes, chose $c=100, n_0=1$ $0.5n \stackrel{?}{\in} O(n/\log n)$

Recall:

 $O(g(n)) = \{f(n) : \text{There exist positive constants } c \text{ and } n_0\}$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Exercises:

 $100n \stackrel{?}{\in} O(n)$ Yes, chose $c=100, n_0=1$ $0.5n \stackrel{?}{\in} O(n/\log n)$ No:

$$
4/9
$$

Recall:

 $O(g(n)) = \{f(n) : \text{ There exist positive constants } c \text{ and } n_0\}$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Exercises:

 $100n \stackrel{?}{\in} O(n)$ Yes, chose $c=100, n_0=1$ 0.5 n $\stackrel{?}{\in}$ $O(n/\log n)$ No: Suppose that such constants c and n_0 exist. Then, for every $n > n_0$:

Recall:

 $O(g(n)) = \{f(n) : \text{ There exist positive constants } c \text{ and } n_0\}$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Exercises:

 $100n \stackrel{?}{\in} O(n)$ Yes, chose $c=100, n_0=1$ 0.5 n $\stackrel{?}{\in}$ $O(n/\log n)$ No: Suppose that such constants c and n_0 exist. Then, for every $n > n_0$:

$$
0.5n \leq cn/\log n
$$

Recall:

 $O(g(n)) = \{f(n) : \text{There exist positive constants } c \text{ and } n_0\}$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Exercises:

 $100n \stackrel{?}{\in} O(n)$ Yes, chose $c=100, n_0=1$ 0.5 n $\stackrel{?}{\in}$ $O(n/\log n)$ No: Suppose that such constants c and n_0 exist. Then, for every $n > n_0$:

> $0.5n \leq cn/\log n$ $\log n \leq 2c$

Recall:

 $O(g(n)) = \{f(n) : \text{There exist positive constants } c \text{ and } n_0\}$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Exercises:

 $100n \stackrel{?}{\in} O(n)$ Yes, chose $c=100, n_0=1$ 0.5 n $\stackrel{?}{\in}$ $O(n/\log n)$ No: Suppose that such constants c and n_0 exist. Then, for every $n > n_0$:

$$
0.5n \leq cn/\log n
$$

$$
\log n \leq 2c
$$

$$
n \leq 2^{2c}
$$
, a contradiction,

since this does not hold for every $n > 2^{2c}$.

Find constants c, n_0 as in the statement of the definition of Big-O, i.e., such that $f(n) \leq c \cdot g(n)$, for all $n \geq n_0$

Find constants c, n_0 as in the statement of the definition of Big-O, i.e., such that $f(n) \leq c \cdot g(n)$, for all $n \geq n_0$

Proving that $f \notin O(g)$:

Find constants c, n_0 as in the statement of the definition of Big-O, i.e., such that $f(n) \leq c \cdot g(n)$, for all $n \geq n_0$

Proving that $f \notin O(g)$:

Proof by contradiction: Assume that constants c, n_0 exist as in the statement of the definition of Big-O and derive a contradiction

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f + g \in O(h)$.

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f + g \in O(h)$.

Proof.

To Do: We need to find constants C, N_0 such that

 $f(n) + g(n) \leq C \cdot h(n)$, for every $n \geq N_0$.

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f + g \in O(h)$.

Proof.

To Do: We need to find constants C, N_0 such that

$$
f(n)+g(n)\leq C\cdot h(n), \text{ for every } n\geq N_0.
$$

Since $f \in O(h)$ there exist constants c, n_0 such that $f(n) < c \cdot h(n)$, for every $n > n_0$.

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f + g \in O(h)$.

Proof.

To Do: We need to find constants C, N_0 such that

$$
f(n) + g(n) \leq C \cdot h(n), \text{ for every } n \geq N_0.
$$

Since $f \in O(h)$ there exist constants c, n_0 such that $f(n) < c \cdot h(n)$, for every $n > n_0$. Since $g \in O(h)$ there exist constants c', η_0' such that $g(n) \leq c'h(n)$, for every $n \geq n'_0$.

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f + g \in O(h)$.

Proof.

To Do: We need to find constants C, N_0 such that

$$
f(n) + g(n) \leq C \cdot h(n), \text{ for every } n \geq N_0.
$$

Since $f \in O(h)$ there exist constants c, n_0 such that $f(n) \leq c \cdot h(n)$, for every $n \geq n_0$. Since $g \in O(h)$ there exist constants c', η_0' such that $g(n) \leq c'h(n)$, for every $n \geq n'_0$. Let $C = c + c'$ and let $N_0 = \max\{n_0, n'_0\}$. Then:

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f + g \in O(h)$.

Proof.

To Do: We need to find constants C, N_0 such that

$$
f(n) + g(n) \leq C \cdot h(n), \text{ for every } n \geq N_0.
$$

Since $f \in O(h)$ there exist constants c, n_0 such that $f(n) \leq c \cdot h(n)$, for every $n \geq n_0$. Since $g \in O(h)$ there exist constants c', η_0' such that $g(n) \leq c'h(n)$, for every $n \geq n'_0$. Let $C = c + c'$ and let $N_0 = \max\{n_0, n'_0\}$. Then: $f(n) + g(n)$

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f + g \in O(h)$.

Proof.

To Do: We need to find constants C, N_0 such that

$$
f(n) + g(n) \leq C \cdot h(n), \text{ for every } n \geq N_0.
$$

Since $f \in O(h)$ there exist constants c, n_0 such that $f(n) \leq c \cdot h(n)$, for every $n \geq n_0$. Since $g \in O(h)$ there exist constants c', η_0' such that $g(n) \leq c'h(n)$, for every $n \geq n'_0$. Let $C = c + c'$ and let $N_0 = \max\{n_0, n'_0\}$. Then: $f(n) + g(n) \le ch(n) + c'h(n)$

Lemma (Sum of Two Functions)

Suppose that $f, g \in O(h)$. Then: $f + g \in O(h)$.

Proof.

To Do: We need to find constants C, N_0 such that

$$
f(n) + g(n) \leq C \cdot h(n), \text{ for every } n \geq N_0.
$$

Since $f \in O(h)$ there exist constants c, n_0 such that $f(n) \leq c \cdot h(n)$, for every $n \geq n_0$. Since $g \in O(h)$ there exist constants c', η_0' such that $g(n) \leq c'h(n)$, for every $n \geq n'_0$. Let $C = c + c'$ and let $N_0 = \max\{n_0, n'_0\}$. Then: $f(n) + g(n) \le ch(n) + c'h(n) = C \cdot h(n)$ for every $n \ge N_0$.

Further Properties

Lemma (Polynomials)

Let $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$, for some integer k that is independent of n. Then: $f(n) \in O(n^k)$.

Further Properties

Lemma (Polynomials)

Let $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$, for some integer k that is independent of n. Then: $f(n) \in O(n^k)$.

Proof: Apply statement on last slide $k = O(1)$ times

Let $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$, for some integer k that is independent of n. Then: $f(n) \in O(n^k)$.

Proof: Apply statement on last slide $k = O(1)$ times

Let $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$, for some integer k that is independent of n. Then: $f(n) \in O(n^k)$.

Proof: Apply statement on last slide $k = O(1)$ times

$$
n^2 = n + n + \underbrace{n + \dots n}_{n-2 \text{ times}}
$$

Let $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$, for some integer k that is independent of n. Then: $f(n) \in O(n^k)$.

Proof: Apply statement on last slide $k = O(1)$ times

$$
n^2 = n + n + \underbrace{n + \ldots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \ldots n}_{n-2 \text{ times}}
$$

Let $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$, for some integer k that is independent of n. Then: $f(n) \in O(n^k)$.

Proof: Apply statement on last slide $k = O(1)$ times

$$
n2 = n + n + n + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}}
$$

= $O(n) + n + \dots n$
_{n-2 \text{ times}}}

Let $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$, for some integer k that is independent of n. Then: $f(n) \in O(n^k)$.

Proof: Apply statement on last slide $k = O(1)$ times

$$
n^2 = n + n + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}}
$$

= $O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + O(n) + O(n)$

Let $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$, for some integer k that is independent of n. Then: $f(n) \in O(n^k)$.

Proof: Apply statement on last slide $k = O(1)$ times

$$
n^2 = n + n + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}}
$$

= $O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}}$

Let $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$, for some integer k that is independent of n. Then: $f(n) \in O(n^k)$.

Proof: Apply statement on last slide $k = O(1)$ times

$$
n^2 = n + n + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}}
$$

= $O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = \dots = O(n).$

$$
7\,/\,9
$$

Let $f(n) = c_0 + c_1 n + c_2 n^2 + c_3 n^3 + \cdots + c_k n^k$, for some integer k that is independent of n. Then: $f(n) \in O(n^k)$.

Proof: Apply statement on last slide $k = O(1)$ times

Attention: Wrong proof of $n^2 \in O(n)$: (this is clearly wrong)

$$
n^2 = n + n + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}}
$$

= $O(n) + \underbrace{n + \dots n}_{n-2 \text{ times}} = O(n) + O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = O(n) + \underbrace{n + \dots n}_{n-3 \text{ times}} = \dots = O(n).$

Application of statement on last slide n times! (only allowed to apply statement $O(1)$ times!)

• We will express the runtime of algorithms using O-notation

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms
- **Important:** Find the slowest growing function f such that our runtime is in $O(f)$ (most algorithms have a runtime of $O(2^n)$)

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms
- **Important:** Find the slowest growing function f such that our runtime is in $O(f)$ (most algorithms have a runtime of $O(2^n)$)

Important Properties for the Analysis of Algorithms

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms
- **.** Important: Find the slowest growing function f such that our runtime is in $O(f)$ (most algorithms have a runtime of $O(2^n)$)

Important Properties for the Analysis of Algorithms

• Composition of instructions:

$$
f\in O(h_1), g\in O(h_2) \text{ then } f+g\in O(h_1+h_2)
$$

- We will express the runtime of algorithms using O-notation
- This allows us to compare the runtimes of algorithms
- **.** Important: Find the slowest growing function f such that our runtime is in $O(f)$ (most algorithms have a runtime of $O(2^n)$)

Important Properties for the Analysis of Algorithms

• Composition of instructions:

$$
f\in O(h_1), g\in O(h_2) \text{ then } f+g\in O(h_1+h_2)
$$

• Loops: (repetition of instructions)

$$
f\in O(h_1), g\in O(h_2) \text{ then } f\cdot g\in O(h_1\cdot h_2)
$$

Rough incomplete Hierachy

• Constant time: $O(1)$

Rough incomplete Hierachy

• Constant time: $O(1)$ (individual operations)

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FAST-PEAK-FINDING)

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g., $O(\log^2 n)$, $O(\log^{10} n)$,...

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g., $O(\log^2 n)$, $O(\log^{10} n)$,...
- \bullet Linear time: $O(n)$

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g., $O(\log^2 n)$, $O(\log^{10} n)$,...
- Linear time: $O(n)$ (e.g., time to read the input)

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g., $O(\log^2 n)$, $O(\log^{10} n)$,...
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O(n^2)$

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g., $O(\log^2 n)$, $O(\log^{10} n)$,...
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O(n^2)$ (potentially slow on big inputs)

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g., $O(\log^2 n)$, $O(\log^{10} n)$,...
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O(n^2)$ (potentially slow on big inputs)
- Polynomial time: $O(n^c)$

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g., $O(\log^2 n)$, $O(\log^{10} n)$,...
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O(n^2)$ (potentially slow on big inputs)
- Polynomial time: $O(n^c)$ (used to be considered efficient)

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g., $O(\log^2 n)$, $O(\log^{10} n)$,...
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O(n^2)$ (potentially slow on big inputs)
- Polynomial time: $O(n^c)$ (used to be considered efficient)
- Exponential time: $O(2^n)$

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g., $O(\log^2 n)$, $O(\log^{10} n)$,...
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O(n^2)$ (potentially slow on big inputs)
- Polynomial time: $O(n^c)$ (used to be considered efficient)
- Exponential time: $O(2^n)$ (works only on very small inputs)

- Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g., $O(\log^2 n)$, $O(\log^{10} n)$,...
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O(n^2)$ (potentially slow on big inputs)
- Polynomial time: $O(n^c)$ (used to be considered efficient)
- Exponential time: $O(2^n)$ (works only on very small inputs)
- Super-exponential time: e.g. $O(2^{2^n})$

- • Constant time: $O(1)$ (individual operations)
- Sub-logarithmic time: e.g., $O(\log \log n)$
- Logarithmic time: $O(\log n)$ (FAST-PEAK-FINDING)
- Poly-logarithmic time: e.g., $O(\log^2 n)$, $O(\log^{10} n)$,...
- Linear time: $O(n)$ (e.g., time to read the input)
- Quadratic time: $O(n^2)$ (potentially slow on big inputs)
- Polynomial time: $O(n^c)$ (used to be considered efficient)
- Exponential time: $O(2^n)$ (works only on very small inputs)
- Super-exponential time: e.g. $O(2^{2^n})$ (big trouble...)