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Runtime of Algorithms

Runtime of an Algorithm

@ Function f : N — N that maps the input length n € N to the
number of simple/unit/elementary operations (worst case,
best case, average case, runtime on a specific input, ...)

@ The number of array accesses in PEAK FINDING represents
the number of unit operations very well
Which runtime is better?

4(n — 1) (simple peak finding algorithm)

@ 5log n (fast peak finding algorithm)
e 0.1n?

e nlog(0.5n)

e 0.01-2"7

Answer: It depends... But there is a favourite
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Runtime Comparisons
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0.1n> < 0.01-2" < 5logn < nlog(n/2) < 4(n—1)
(n=10)
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Runtime Comparisons
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5logn < 0.1n® < nlog(n/2) < 4(n—1) < 0.01-2"
(n = 15)
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Runtime Comparisons
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5logn < nlog(n/2) <0.1n* < 4(n—1)
(n=30)
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Runtime Comparisons
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5logn < nlog(n/2) < 4(n—1) < 0.1n?
(n=50)
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Runtime Comparisons
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5logn < 4(n—1) < nlog(n/2) < 0.1n?
(n = 200)
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Order Functions Disregarding Constants

Aim: We would like to sort algorithms according to their runtime
Is algorithm A faster than algorithm B?
Asymptotic Complexity

@ For large enough n, constants seem to matter less

@ For small values of n, most algorithms are fast anyway
(Attention: this is often but not always true!)

Solution: Consider asymptotic behavior of functions

A function f(n) grows asymptotically at least as fast as a function
g(n) if there exists an nyg € N such that for every n > ng it holds:

f(n) > g(n) .
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Example: f grows at least as fast as g

f(n)
g(n)
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Example 1

Example: f(n) = 1n? g(n) =3n
Then f(n) grows asymptotically at least as fast as g(n).

Proof: Find values of n for which the following holds:

1,
— > 3n=>
2n > 3n
n > 6.
Thus, we can chose any ng > 6. ]
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Example 2

Example: f(n) =2n%, g(n) =3 -2"
Then g(n) grows asymptotically at least as fast as f(n).

Proof: Find values of n for which the following holds:

1

—.2" > 298
2
2n—1 > 23|ogn+1 (using n— 2Iogn)
n—1 > 3logn+1
n > 3logn+2

This holds for every n > 16 (which follows from the racetrack
principle). Thus, we chose any ny > 16. O
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The Racetrack Principle

Racetrack Principle: Let f, g be functions, k an integer and
suppose that the following holds:

Q f(k) > g(k) and
@ f'(n) > g'(n) for every n > k .
Then for every n > k, it holds that f(n) > g(n).

Example: n > 3log n+ 2 holds for every n > 16
@ n > 3logn+ 2 holds for n =16
o We have: (n) =1and (3logn+2) = -3 < I for every
n > 16. The result follows.
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Order Functions by Asymptotic Growth

If < means grows asymptotically at least as fast as then we get:

5logn < 4(n—1) < nlog(n/2) <0.1n> < 0.01-2"
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