
Θ and Ω Notation
COMS10018 - Algorithms

Dr Christian Konrad

Dr Christian Konrad Θ and Ω Notation 1 / 8



Limitations/Strengths of Big-O

O-notation: Upper Bound

Runtime O(f (n)): On any input of length n, the runtime is
bounded by some function in O(f (n))

For example, if the runtime is O(n2) then the actual runtime
could also be in O(log n), O(n), O(n log n), O(n

√
n), . . .

This is a strong point:

Worst-case runtime: A runtime of O(f (n)) guarantees that
the algorithm will not be slower, but may be faster

Example: Fast-Peak-Finding often faster than 5 log n

How to Avoid Ambiguities

Θ-notation: Growth is precisely determined (up to constants)

Ω-notation: Gives us a lower bound (up to constants)

Dr Christian Konrad Θ and Ω Notation 2 / 8



Θ-notation

“Theta”-notation:
Growth is precisely determined up to constants

Definition: Θ-notation (“Theta”)

Let g(n) be a function. Then Θ(g(n)) is the set of functions:

Θ(g(n)) = {f (n) : There exist positive constants c1, c2 and n0

s.t. 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n) for all n ≥ n0}

f ∈ Θ(g): “f is asymptotically sandwiched between constant
multiples of g”

Dr Christian Konrad Θ and Ω Notation 3 / 8



Symmetry of Θ

Lemma

The following statements are equivalent:

1 f ∈ Θ(g)

2 g ∈ Θ(f )

Proof. Suppose that f ∈ Θ(g). To show that g ∈ Θ(f ), we need
to prove that there are positive constants C1,C2,N0 such that

0 ≤ C1f (n) ≤ g(n) ≤ C2f (n), for all n ≥ N0 . (1)

Since f ∈ Θ(g), there are positive constants c1, c2, n0 s.t.

0 ≤ c1g(n) ≤ f (n) ≤ c2g(n), for all n ≥ n0. (2)

Setting C1 =
1
c2
, C2 =

1
c1
,N0 = n0, then (1) is equivalent to

(2).

Dr Christian Konrad Θ and Ω Notation 4 / 8



Further Properties of Θ

More on Theta

Lemma (Relationship between Θ and Big-O)

The following statements are equivalent:

1 f ∈ Θ(g)

2 f ∈ O(g) and g ∈ O(f )

Proof. → Exercise.

Runtime of Algorithm in Θ(f (n))?

Only makes sense if the algorithm always requires Θ(f (n))
steps, i.e., both the best-case and worst-case runtime are
Θ(f (n))

This is not the case in Fast-Peak-Finding

However, correct to say that the worst-case runtime of an
algorithms is Θ(f (n))

Dr Christian Konrad Θ and Ω Notation 5 / 8



Ω-notation

Big Omega-Notation:

Definition: Ω-notation (“Big Omega”)

Let g(n) be a function. Then Ω(g(n)) is the set of functions:

Ω(g(n)) = {f (n) : There exist positive constants c and n0

such that 0 ≤ cg(n) ≤ f (n) for all n ≥ n0}

f ∈ Ω(g): “f grows asymptotically at least as fast as g up to
constants”

Dr Christian Konrad Θ and Ω Notation 6 / 8



Properties of Ω

Lemma

The following statements are equivalent:

1 f ∈ Ω(g)

2 g ∈ O(f )

Proof. → Exercise.

Examples: Big Omega

10n2 ∈ Ω(n)

6n ∈ Ω(n8)

. . . (reverse examples for f ∈ O(g))

Runtime of Algorithm in Ω(f )?
Only makes sense if best-case runtime is in Ω(f )

Dr Christian Konrad Θ and Ω Notation 7 / 8



Using O, Ω, Θ in Equations

Notation

O, Ω, Θ are often used in equations

∈ is then replaced by =

Examples

4n3 = O(n3)

n + 10 = n + O(1)

10n2 + 1/n = 10n2 + O(1)

Observe

Sloppy but very convenient

When using O, Θ, Ω in equations then details get lost

This allows us to focus on the essential part of an equation

Not reversible! E.g., n + 10 = n + O(1) but
n + O(1) ̸= n + 10...

Dr Christian Konrad Θ and Ω Notation 8 / 8


