
Linear and Binary Search
COMS10018 - Algorithms

Dr Christian Konrad

Dr Christian Konrad Linear and Binary Search 1 / 8

Runtime of Algorithms

Consider an algorithm A for a specific problem P

Set of Potential Inputs

Let S(n) be the set of all potential inputs of length n for P
For X ∈ S(n), let T (X) be the runtime of A on input X

Worst-case Runtime: max
X∈S(n)

T (X)

Best-case Runtime: min
X∈S(n)

T (X)

Average-case Runtime:
1

|S(n)|
∑

X∈S(n)

T (X)

Dr Christian Konrad Linear and Binary Search 2 / 8

Linear Search

Linear Search:

Input: Array A of n integers from range {0, 1, 2, . . . , k − 1},
for some integer k , integer t ∈ {0, 1, 2, . . . , k − 1}
Output: 1, if A contains t, 0 otherwise

Require: Array A, integer t
for i = 0, . . . , n − 1 do

if A[i] = t then
return 1

return 0

Worst-case Runtime: Θ(n)
E.g. on any input with
A[i] ̸= t for every i

Best-case Runtime: O(1)
On any input with A[0] = t

Average-case Runtime: (over all possible inputs of length n)

Dr Christian Konrad Linear and Binary Search 3 / 8

Average-case Analysis of Linear Search

Possible Inputs of Length n

S(n) := {arrays A of length n with A[i] ∈ {0, 1, 2, . . . , k − 1},
for every 0 ≤ i ≤ n − 1}

|S(n)| = kn .

Auxiliary Function: For A ∈ S(n), t ∈ {0, 1, . . . , k − 1}:

Left(A, t) = min{i : A[i] = t} .

If no such position exists then Left(A, t) = n.

Examples:

Left(23192, 9) = 3

Left(0000, 1) = 4

→ Linear search loop executed Left(X , t) + 1 times

Dr Christian Konrad Linear and Binary Search 4 / 8

Average-case Analysis of Linear Search (continued)

Average-case Runtime for k = 2: (binary strings)
We compute average number of steps the loop is executed (t = 1)

AVG =
1

|S(n)|
∑

A∈S(n)

Left(A, 1) + 1

= 2−n

((
n−1∑
i=0

|{A : Left(A, 1) = i}| · (i + 1)

)
+ (n + 1)

)
.

0 0 0 0 . . . 0︸ ︷︷ ︸
i times

1 X X X . . . X︸ ︷︷ ︸
n−i−1 times

= 2−n

((
n−1∑
i=0

2n−1−i · (i + 1)

)
+ (n + 1)

)

=

(
n−1∑
i=0

i + 1

2i+1

)
+ (n + 1)2−n ≤ 2 + 1 = 3 = O(1) .

→ AVG-case
runtime is O(1)

Dr Christian Konrad Linear and Binary Search 5 / 8

(Trick for Bounding Sums)

How to bound
∑n

i=0
i
2i
:

Sn :=
n∑

i=0

i

2i
.

Trick: Consider 1
2Sn

Sn =
1

2
+

2

4
+

3

8
+

4

16
+ · · ·+ n

2n

1

2
Sn =

1

4
+

2

8
+

3

16
+ · · ·+ n

2n+1

Sn −
1

2
Sn =

1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
− n

2n+1

=

(
n∑

i=1

1

2i

)
− n

2n+1
≤

(
n∑

i=1

1

2i

)
≤ 1 .

→ Sn ≤ 2
Dr Christian Konrad Linear and Binary Search 6 / 8

Binary Search

Binary Search:

Input: A sorted array A of integers, an integer t

Output: −1 if A does not contain t, otherwise a position i
such that A[i] = t

Require: Sorted array A of length n, integer t
if |A| ≤ 2 then

Check A[0] and A[1] and return answer
if A[⌊n/2⌋] = t then

return ⌊n/2⌋
else if A[⌊n/2⌋] > t then

return Binary-Search(A[0, . . . , ⌊n/2⌋ − 1])
else
return ⌊n/2⌋ + 1 + Binary-Search(A[⌊n/2⌋ +
1, n − 1])

Algorithm Binary-Search

Dr Christian Konrad Linear and Binary Search 7 / 8

Worst-case Analysis of Binary Search

Worst-case Analysis

Without recursive calls, we spend O(1) time in the function

Worst-case runtime = ”maximum # of recursive calls“︸ ︷︷ ︸
r

·O(1)

Observe that in iteration i the size of the array is at most half
the size than in iteration i − 1

We stop as soon as the size of the array is at most two

Hence, we obtain the necessary and sufficient condition:

n

2r
≤ 2

Solving n
2r ≤ 2 yields r ≥ log n − 1. Hence, r = ⌈log n − 1⌉ ≤ log n

iterations are enough.

Worst-case runtime of Binary Search: O(log n)

Dr Christian Konrad Linear and Binary Search 8 / 8

