

Proofs by Induction (Recap)

COMS10018 - Algorithms

Dr Christian Konrad

Proofs by Induction and Loop Invariants

Proofs by Induction

- Correctness of an algorithm often requires proving that a property holds throughout the algorithm (e.g. loop invariant)
- This is often done by induction
- We will use proofs by induction for proving loop invariants (soon) and for solving recurrences (later)

Proofs by Induction

Structure of a Proof by Induction

1 Statement to Prove:

$P(n)$ holds for all $n \in \mathbb{N}$
(or $n \in \mathbb{N} \cup \{0\}$)
(or n integer and $n \geq k$)
(or similar)

2 Induction hypothesis:

Assume that $P(n)$ holds

3 Induction step:

Prove that $P(n + 1)$ also holds

If domino n falls then domino $n + 1$
falls as well

4 Base case: Prove that $P(1)$ holds

Domino 1 falls

Structure of a Proof by Induction

- **Statement to prove:** For example, for all $n \geq k$ $P(n)$ is true

$$\forall n \geq 0 : \sum_{i=0}^n i = \frac{n(n+1)}{2} .$$

- **Base case:** Prove that $P(k)$ holds

$$n = 0 : \sum_{i=0}^0 i = 0 = \frac{0 \cdot (0+1)}{2} . \checkmark$$

- **Induction hypothesis:** Assume that P holds for some n
(Strong induction: for all m with $k \leq m \leq n$)
- **Induction step:** Prove that $P(n+1)$ holds

$$\sum_{i=0}^{n+1} i = n+1 + \sum_{i=0}^n i = n+1 + \frac{n(n+1)}{2} = \frac{(n+1)(n+2)}{2} . \checkmark$$

Geometric Series

Geometric Series: Let n be an integer and let $x \neq 1$. Then:

$$\sum_{i=0}^n x^i = \frac{x^{n+1} - 1}{x - 1} .$$

Proof. (by induction on n)

- *Base case.* ($n = 0$)
 $\sum_{i=0}^0 x^i = x^0 = 1$ and $\frac{x^{n+1} - 1}{x - 1} = \frac{x - 1}{x - 1} = 1$. ✓
- *Induction Step.* Suppose the formula holds for n . We will prove that it also holds for $n + 1$:

$$\begin{aligned}\sum_{i=0}^{n+1} x^i &= x^{n+1} + \sum_{i=0}^n x^i = x^{n+1} + \frac{x^{n+1} - 1}{x - 1} \\ &= \frac{x^{n+1}(x - 1) + x^{n+1} - 1}{x - 1} = \frac{x^{n+2} - 1}{x - 1} . \quad \checkmark\end{aligned}$$

Spot the Flaw

Example: $a^n = 1$, for every $a \neq 0$ and n nonnegative integer

- ① Base case ($n = 0$): $a^0 = 1$
- ② Induction hypothesis: $a^m = 1$, for every $0 \leq m \leq n$ (strong induction)
- ③ Induction step:

$$a^{n+1} = a^{2n-(n-1)} = \frac{a^{2n}}{a^{n-1}} = \frac{a^n \cdot a^n}{a^{n-1}} = \frac{1 \cdot 1}{1} = 1 \dots$$

Problem: a^1 is computed as $\frac{a^0 a^0}{a^{-1}}$ and induction hypothesis does not hold for $n = -1$!