Loop Invariants and Insertion-sort

COMS10018 - Algorithms

Dr Christian Konrad

Dr Christian Konrad Loop Invariants and Insertion-sort 1/8



Loop Invariants

Definition: A loop invariant is a property P that, if true before
iteration /, it is also true before iteration i + 1

Require: Array of n positive integers A
Example: m + A[0]
Computing the maximum fori=1,...,n—1do
if Ali] > m then
Invariant: Before iteration i: m <« A[i]
m=max{A[j]] : 0</j < i} return_m

Proof: Let m; be the value of m before iter. i (— my = A[0]).
@ Base case. i =1: my = A[0] = max{A[j] : 0<j <1}V
@ Induction step.
Case A[i] > mj: miyz1 = Ali] > mi = max{A[j] : 0</ <
it = mipr=max{A[j] : 0<j<i+1}
Case A[i] < mj: mipz1 =mj=max{A[j] : 0<j<i} =
max{A[j] : 0<j<i+1} Vv

Dr Christian Konrad Loop Invariants and Insertion-sort



Loop Invariants - More Formally

Main Parts:
o Initialization: It is true prior to the first iteration of the loop.
before iteration i = 1: m = A[0] = max{A[j]] : j <1} V
@ Maintenance: If it is true before an iteration of the loop, it
remains true before the next iteration.
before iteration i > 1: m=max{A[j] : j<i} vV
o Termination: When the loop terminates, the invariant gives

us a useful property that helps show that the algorithm is
correct.

At the end of the loop, i.e., after iteration n — 1 (or before a
virtual iteration n) m = m, = max{A[j] : j<n} v

Dr Christian Konrad Loop Invariants and Insertion-sort



Require: n integer
s+ 1
for j=2,...,ndo
S¢<S-j
return s

Invariant: At beginning of iteration j: s = (j — 1)!
Q Let s; be the value of s prior to iteration j
@ Initialization: s, =1=(2-1)! v
@ Maintenance: sj.1=s5;-j=(—-1)-j=/1 V
@ Termination: After iteration n, i.e., before iteration n+ 1,
the value of sis spy1 =(n+1—-1) =n! vV
Algorithm computes the factorial function

Dr Christian Konrad Loop Invariants and Insertion-sort



Example: Insertion Sort

Sorting Problem
@ Input: An array A of n numbers
@ Output: A reordering of As.t. A[0] < A[1] <--- < A[n—1]

Require: Array A of n numbers
forj=1,...,n—1do
v <+ A[Jj]
i—j—1
while i > 0 and A[i] > v do
Ali + 1] < A[f]
i+—i—1
Ali +1] v
INSERTION-SORT

Dr Christian Konrad Loop Invariants and Insertion-sort



Require: Array A of n numbers
forj=1,...,n—1do

v+ A[j]

i+—j—1

while i > 0 and A[i] > v do
Ali + 1] « A[i]
i+—i—1

Ali +1] + v

Dr Christian Konrad Loop Invariants and Insertion-sort 6/ 8



Loop Invariant of Insertion-sort

forj=1,...,n—1do
v+ A[j]
Pej—1
while i > 0 and A[i] > v do
Ali + 1] <+ A[]
i+—i—1
Ali +1] « v

Loop Invariant: At beginning of iteration j of the outer for loop,
the subarray A[0, j — 1] consists of the elements originally in
A[0,j — 1], but in sorted order

e Initialization: j = 1: subarray A[0] is sorted v’

e Maintenance: Informally, element A[j] is inserted at the
right place within A[0,j]. A formal argument would require
another loop invariant for the inner loop. v

e Termination: After iteration j = n — 1 (i.e., before iteration
J = n) the loop invariant states that A is sorted. v/

Dr Christian Konrad Loop Invariants and Insertion-sort



Worst-case Runtime of Insertion-sort

Worst-case Runtime:
@ We have two nested loops
@ The outer loop goes from j=1toj=n—-1
@ The inner loop goes from i = j — 1 down to i = 0 in worst case

@ All other operations take time O(1). Hence:
n—1 n—1 n(n o 1)
Y j0() =0 Y= 0™ Y = oy r-n) = o().
j=1 j=1

Best-case Runtime: O(n)
E.g., if input is already sorted

Dr Christian Konrad Loop Invariants and Insertion-sort



