
Loop Invariants and Insertion-sort
COMS10018 - Algorithms

Dr Christian Konrad

Dr Christian Konrad Loop Invariants and Insertion-sort 1 / 8



Loop Invariants

Definition: A loop invariant is a property P that, if true before
iteration i , it is also true before iteration i + 1

Require: Array of n positive integers A
m← A[0]
for i = 1, . . . , n − 1 do

if A[i ] > m then
m← A[i ]

return m

Example:
Computing the maximum

Invariant: Before iteration i :
m = max{A[j ] : 0 ≤ j < i}

Proof: Let mi be the value of m before iter. i (→ m1 = A[0]).

Base case. i = 1: m1 = A[0] = max{A[j ] : 0 ≤ j < 1} ✓
Induction step.
Case A[i ] > mi : mi+1 = A[i ] > mi = max{A[j ] : 0 ≤ j <
i} ⇒ mi+1 = max{A[j ] : 0 ≤ j < i + 1}
Case A[i ] ≤ mi : mi+1 = mi = max{A[j ] : 0 ≤ j < i} =
max{A[j ] : 0 ≤ j < i + 1} ✓

Dr Christian Konrad Loop Invariants and Insertion-sort 2 / 8



Loop Invariants - More Formally

Main Parts:

Initialization: It is true prior to the first iteration of the loop.

before iteration i = 1 : m = A[0] = max{A[j ] : j < 1} ✓
Maintenance: If it is true before an iteration of the loop, it
remains true before the next iteration.

before iteration i > 1 : m = max{A[j ] : j < i} ✓
Termination: When the loop terminates, the invariant gives
us a useful property that helps show that the algorithm is
correct.

At the end of the loop, i.e., after iteration n − 1 (or before a
virtual iteration n) m = mn = max{A[j ] : j < n} ✓

Dr Christian Konrad Loop Invariants and Insertion-sort 3 / 8



Example

Require: n integer
s ← 1
for j = 2, . . . , n do

s ← s · j
return s

Invariant: At beginning of iteration j : s = (j − 1)!

1 Let sj be the value of s prior to iteration j

2 Initialization: s2 = 1 = (2− 1)! ✓
3 Maintenance: sj+1 = sj · j = (j − 1)! · j = j! ✓
4 Termination: After iteration n, i.e., before iteration n + 1,

the value of s is sn+1 = (n + 1− 1)! = n! ✓

Algorithm computes the factorial function

Dr Christian Konrad Loop Invariants and Insertion-sort 4 / 8



Example: Insertion Sort

Sorting Problem

Input: An array A of n numbers

Output: A reordering of A s.t. A[0] ≤ A[1] ≤ · · · ≤ A[n − 1]

Require: Array A of n numbers
for j = 1, . . . , n − 1 do

v ← A[j ]
i ← j − 1
while i ≥ 0 and A[i ] > v do
A[i + 1]← A[i ]
i ← i − 1

A[i + 1]← v

Insertion-Sort

Dr Christian Konrad Loop Invariants and Insertion-sort 5 / 8



Example:

Require: Array A of n numbers
for j = 1, . . . , n − 1 do

v ← A[j ]
i ← j − 1
while i ≥ 0 and A[i ] > v do

A[i + 1]← A[i ]
i ← i − 1

A[i + 1]← v

0 1 2 3 4 j = 5

1 3 7 8 9 15

Dr Christian Konrad Loop Invariants and Insertion-sort 6 / 8



Loop Invariant of Insertion-sort

for j = 1, . . . , n − 1 do
v ← A[j ]
i ← j − 1
while i ≥ 0 and A[i ] > v do

A[i + 1]← A[i ]
i ← i − 1

A[i + 1]← v

Loop Invariant: At beginning of iteration j of the outer for loop,
the subarray A[0, j − 1] consists of the elements originally in
A[0, j − 1], but in sorted order

Initialization: j = 1: subarray A[0] is sorted ✓

Maintenance: Informally, element A[j ] is inserted at the
right place within A[0, j ]. A formal argument would require
another loop invariant for the inner loop. ✓

Termination: After iteration j = n − 1 (i.e., before iteration
j = n) the loop invariant states that A is sorted. ✓

Dr Christian Konrad Loop Invariants and Insertion-sort 7 / 8



Worst-case Runtime of Insertion-sort

Worst-case Runtime:

We have two nested loops

The outer loop goes from j = 1 to j = n − 1

The inner loop goes from i = j −1 down to i = 0 in worst case

All other operations take time O(1). Hence:

n−1∑
j=1

j ·O(1) = O(1)
n−1∑
j=1

j = O(1)
n(n − 1)

2
= O(1)(n2−n) = O(n2) .

Best-case Runtime: O(n)
E.g., if input is already sorted

Dr Christian Konrad Loop Invariants and Insertion-sort 8 / 8


