

# Mergesort

## COMS10018 - Algorithms

Dr Christian Konrad

# Definition of the Sorting Problem

## Sorting Problem

- **Input:** An array  $A$  of  $n$  numbers
- **Output:** A reordering of  $A$  s.t.  $A[0] \leq A[1] \leq \dots \leq A[n - 1]$

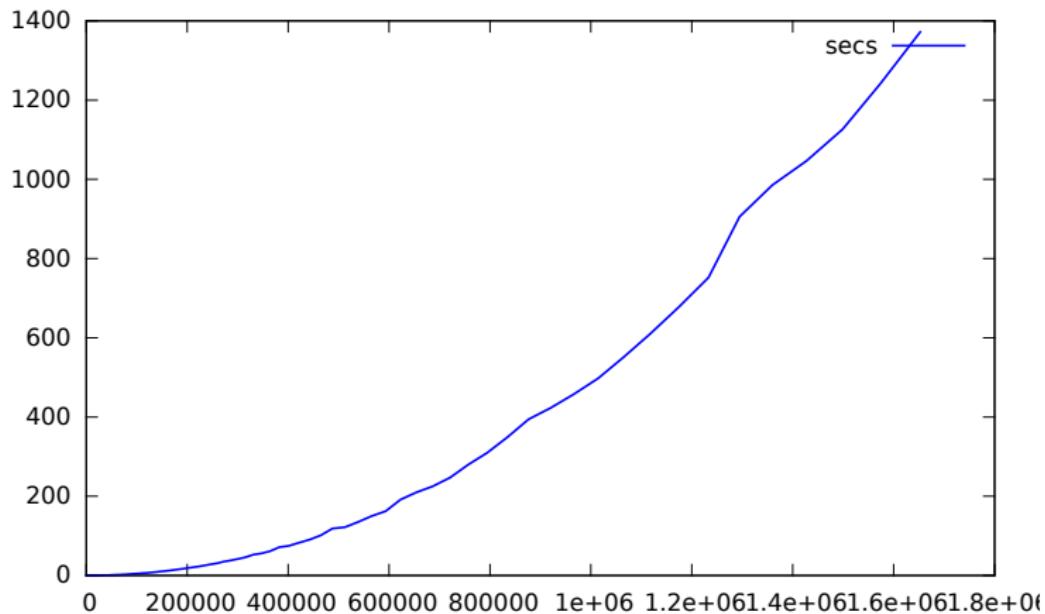
## Why is it important?

- Practical relevance: Appears almost everywhere
- Fundamental algorithmic problem, rich set of techniques
- There is a non-trivial lower bound for sorting (rare!)

## Insertion Sort

- Worst-case runtime  $O(n^2)$
- Surely we can do better?!

# Insertion sort in Practice on Worst-case Instances

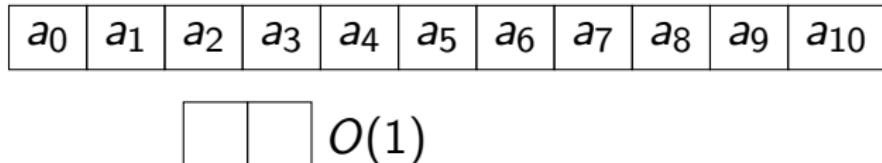


| $n$  | 46929   | 102428  | 364178  | 1014570 |
|------|---------|---------|---------|---------|
| secs | 1.03084 | 4.81622 | 61.2737 | 497.879 |

# Properties of a Sorting Algorithm

## **Definition** (in place)

A sorting algorithm is *in place* if at any moment at most  $O(1)$  array elements are stored outside the array



**Example:** Insertion-sort is in place

## **Definition** (stability)

A sorting algorithm is *stable* if any pair of equal numbers in the input array appear in the same order in the sorted array

**Example:** Insertion-sort is stable

# Records, Keys, and Satellite Data

## Sorting Complex Data

- In reality, data that is to be sorted is rarely entirely numerical (e.g. sort people in a database according to their last name)
- A data item is often also called a **record**
- The **key** is the part of the record according to which the data is to be sorted
- Data different to the key is also referred to as **satellite data**

| family name | first name | data of birth | role            |
|-------------|------------|---------------|-----------------|
| Smith       | Peter      | 02.10.1982    | lecturer        |
| Hills       | Emma       | 05.05.1975    | reader          |
| Jones       | Tom        | 03.02.1977    | senior lecturer |
| ...         |            |               |                 |

**Observe:** Stability makes more sense when sorting complex data as opposed to numbers

# Merge Sort

## Key Idea:

- Suppose that left half and right half of array is sorted
- Then we can merge the two sorted halves to a sorted array in  $O(n)$  time:

## Merge Operation

- Copy left half of  $A$  to new array  $B$
- Copy right half of  $A$  to new array  $C$
- Traverse  $B$  and  $C$  simultaneously from left to right and write the smallest element at the current positions to  $A$

## Example: Merge Operation

|          |                                                                                                                       |   |   |   |   |    |    |    |    |
|----------|-----------------------------------------------------------------------------------------------------------------------|---|---|---|---|----|----|----|----|
| <i>A</i> | <table border="1"><tr><td>1</td><td>3</td><td>4</td><td>5</td><td>7</td><td>9</td><td>10</td><td>11</td></tr></table> | 1 | 3 | 4 | 5 | 7  | 9  | 10 | 11 |
| 1        | 3                                                                                                                     | 4 | 5 | 7 | 9 | 10 | 11 |    |    |

|          |                                                                              |   |    |   |    |
|----------|------------------------------------------------------------------------------|---|----|---|----|
| <i>B</i> | <table border="1"><tr><td>1</td><td>4</td><td>9</td><td>10</td></tr></table> | 1 | 4  | 9 | 10 |
| 1        | 4                                                                            | 9 | 10 |   |    |

|          |                                                                              |   |    |   |    |
|----------|------------------------------------------------------------------------------|---|----|---|----|
| <i>C</i> | <table border="1"><tr><td>3</td><td>5</td><td>7</td><td>11</td></tr></table> | 3 | 5  | 7 | 11 |
| 3        | 5                                                                            | 7 | 11 |   |    |

# Analysis: Merge Operation

## Merge Operation

- **Input:** An array  $A$  of integers of length  $n$  ( $n$  even) such that  $A[0, \frac{n}{2} - 1]$  and  $A[\frac{n}{2}, n - 1]$  are sorted
- **Output:** Sorted array  $A$

## Runtime Analysis:

- ① Copy left half of  $A$  to  $B$ :  $O(n)$  operations
- ② Copy right half of  $A$  to  $C$ :  $O(n)$  operations
- ③ Merge  $B$  and  $C$  and store in  $A$ :  $O(n)$  operations

**Overall:**  $O(n)$  time in worst case

**How can we establish that left and right halves are sorted?**

Divide and Conquer!

# Merge Sort: A Divide and Conquer Algorithm

**Require:** Array  $A$  of  $n$  numbers

**if**  $n = 1$  **then**

**return**  $A$

$A[0, \lfloor \frac{n}{2} \rfloor] \leftarrow \text{MERGESORT}(A[0, \lfloor \frac{n}{2} \rfloor])$

$A[\lfloor \frac{n}{2} \rfloor + 1, n-1] \leftarrow \text{MERGESORT}(A[\lfloor \frac{n}{2} \rfloor + 1, n-1])$

$A \leftarrow \text{MERGE}(A)$

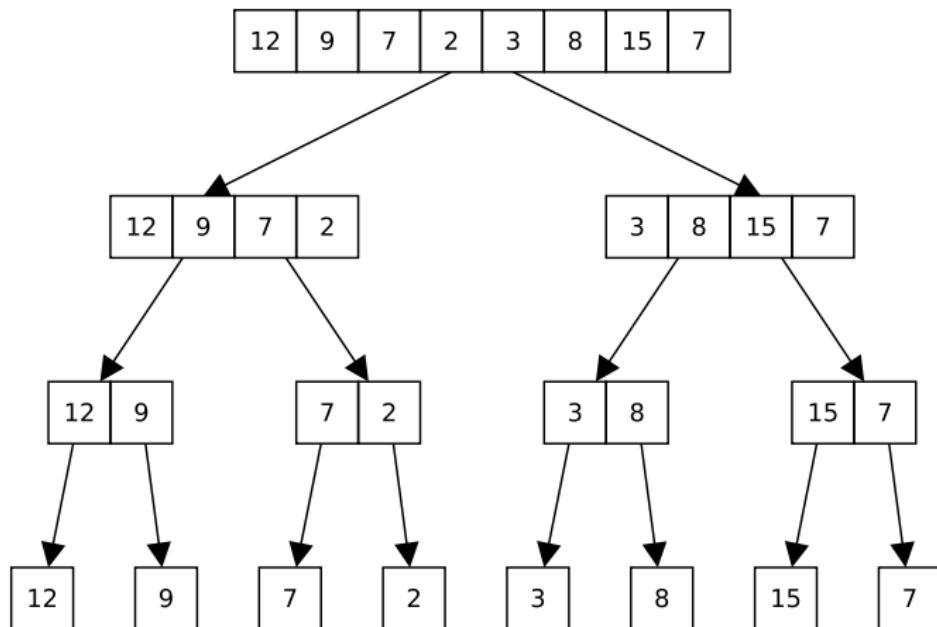
**return**  $A$

MERGESORT

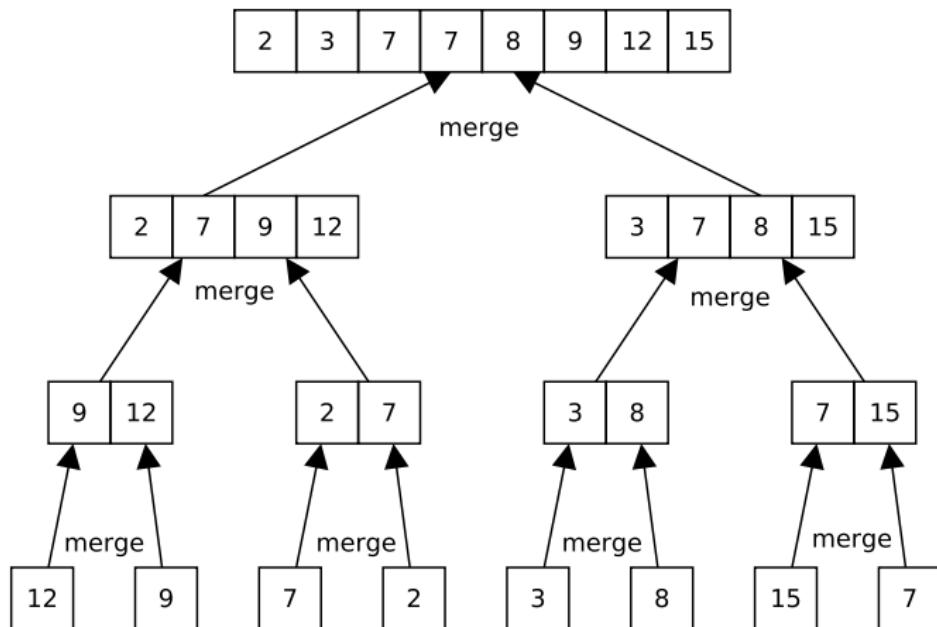
## Structure of a Divide and Conquer Algorithm

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- **Conquer** the subproblems by solving them recursively. If the subproblems are small enough, just solve them in a straightforward manner.
- **Combine** the solutions to the subproblems into the solution for the original problem.

# Analyzing MergeSort: An Example



# Analyzing MergeSort: An Example



# Analyzing Merge Sort

## Analysis Idea:

- We need to sum up the work spent in each node of the *recursion tree*
- The recursion tree in the example is a *complete binary tree*

**Definition:** A tree is a *complete binary tree* if every node has either 2 or 0 children.

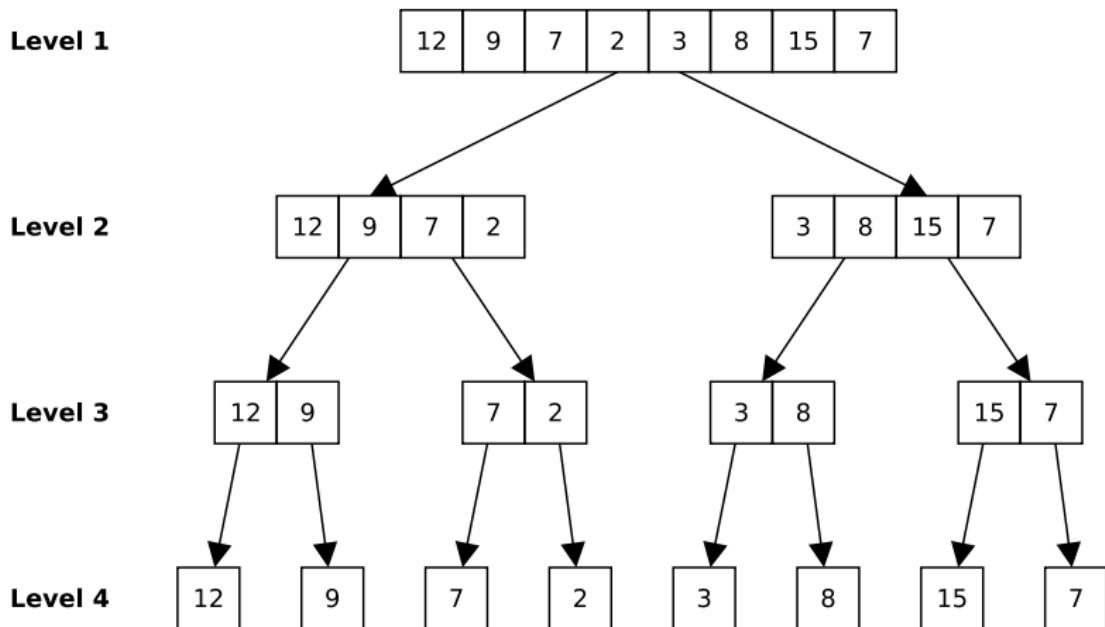
**Definition:** A tree is a *binary tree* if every node has at most 2 children.

*(we will talk about trees in much more detail later in this unit)*

## Questions:

- How many levels?
- How many nodes per level?
- Time spent per node?

# Number of Levels



## Number of Levels (2)

### Level $i$ :

- $2^{i-1}$  nodes (at most)
- Array length in level  $i$  is  $\lceil \frac{n}{2^{i-1}} \rceil$  (at most)
- Runtime of merge operation for each node in level  $i$ :  $O(\frac{n}{2^{i-1}})$

### Number of Levels:

- Array length in last level  $l$  is 1:  $\lceil \frac{n}{2^{l-1}} \rceil = 1$

$$\frac{n}{2^{l-1}} \leq 1 \Rightarrow n \leq 2^{l-1} \Rightarrow \log(n) + 1 \leq l$$

- Array length in last but one level  $l-1$  is 2:  $\lceil \frac{n}{2^{l-2}} \rceil = 2$

$$\frac{n}{2^{l-2}} > 1 \Rightarrow n > 2^{l-2} \Rightarrow \log(n) + 2 > l$$

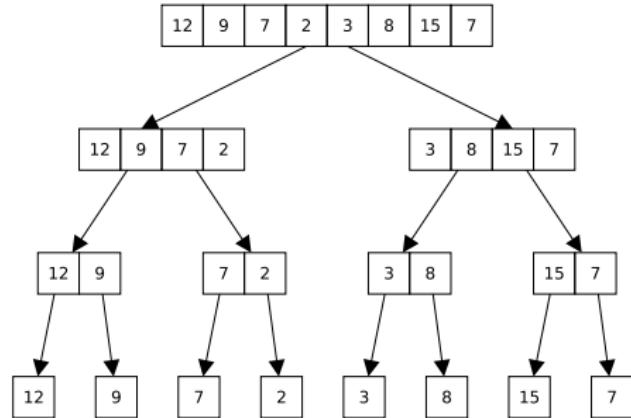
$$\log(n) + 1 \leq l < \log(n) + 2$$

Hence,  $l = \lceil \log n \rceil + 1$  .

# Runtime of Merge Sort

## Sum up Work:

- Levels:  
 $i = \lceil \log n \rceil + 1$
- Nodes on level  $i$ :  
at most  $2^{i-1}$
- Array length in level  $i$ :  
at most  $\lceil \frac{n}{2^{i-1}} \rceil$



## Worst-case Runtime:

$$\sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\lceil \frac{n}{2^{i-1}} \rceil\right) = \sum_{i=1}^{\lceil \log n \rceil + 1} 2^{i-1} O\left(\frac{n}{2^{i-1}}\right)$$
$$= \sum_{i=1}^{\lceil \log n \rceil + 1} O(n) = (\lceil \log n \rceil + 1) O(n) = O(n \log n).$$

# Stability and In Place Property?

## Stability and In Place Property?

- Merge sort is stable
- Merge sort does not sort in place

# Generalizing the Analysis

## Divide and Conquer Algorithm:

Let **A** be a divide and conquer algorithm with the following properties:

- ① **A** performs two recursive calls on input sizes at most  $n/2$
- ② The divide and combine operations in **A** take  $O(n)$  time

Then:

**A** has a runtime of  $O(n \log n)$  .