

# Trees

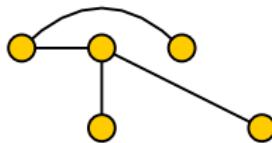
## COMS10018 - Algorithms

Dr Christian Konrad

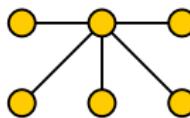
**Definition:** A *tree*  $T = (V, E)$  of size  $n$  is a tuple consisting of

$$V = \{v_1, v_2, \dots, v_n\} \text{ and } E = \{e_1, e_2, \dots, e_{n-1}\}$$

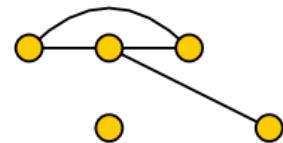
with  $|V| = n$  and  $|E| = n - 1$  with  $e_i = \{v_j, v_k\}$  for some  $j \neq k$  s.t. for every pair of vertices  $v_i, v_j$  ( $i \neq j$ ), there is a path from  $v_i$  to  $v_j$ .  $V$  are the nodes/vertices and  $E$  are the edges of  $T$ .



✓



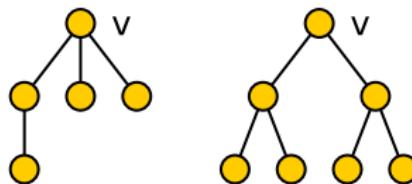
✓



✗

# Rooted Trees

**Definition:** (rooted tree) A *rooted tree* is a triple  $T = (v, V, E)$  such that  $T = (V, E)$  is a tree and  $v \in V$  is a designated node that we call the *root* of  $T$ .



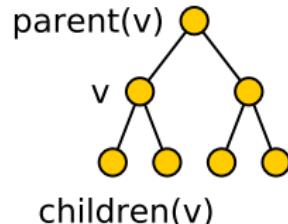
**Definition:** (leaf, internal node) A *leaf* in a tree is a node with exactly one incident edge. A node that is not a leaf is called an *internal node*.

# Children, Parent, and Degree

## Further Definitions:

- The *parent* of a node  $v$  is the closest node on a path from  $v$  to the root. The root does not have a parent.
- The *children* of a node  $v$  are  $v$ 's neighbours except its parent.
- The *height* of a tree is the length of a longest root-to-leaf path.
- The *degree*  $\deg(v)$  of a node  $v$  is the number of incident edges to  $v$ . Since every edge is incident to two vertices we have

$$\sum_{v \in V} \deg(v) = 2 \cdot |E| = 2(n - 1) .$$



- The *level* of a vertex  $v$  is the length of the unique path from the root to  $v$  plus 1.

# Properties of Trees

**Property:** Every tree has at least 2 leaves

**Proof** Let  $L \subseteq V$  be the subset of leaves. Suppose that there is at most 1 leaf, i.e.,  $|L| \leq 1$ . Then:

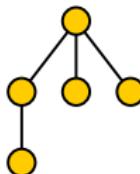
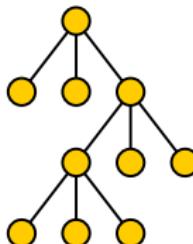
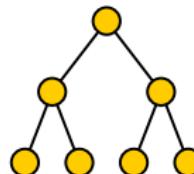
$$\begin{aligned} 2(n-1) &= \sum_{v \in V} \deg(v) \\ &= \sum_{v \in L} \deg(v) + \sum_{v \in V \setminus L} \deg(v) \\ &\geq |L| \cdot 1 + (|V| - |L|) \cdot 2 \\ &= 2|V| - |L| \\ &\geq 2n - 1, \end{aligned}$$

a contradiction. Hence, every tree has at least two leaves. □

# Binary Trees

**Definition:** ( $k$ -ary tree) A (rooted) tree is  $k$ -ary if every node has at most  $k$  children. If  $k = 2$  then the tree is called binary. A  $k$  ary tree is

- *full* if every internal node has exactly  $k$  children,
- *complete* if all levels except possibly the last is entirely filled (and last level is filled from left to right),
- *perfect* if all levels are entirely filled.



complete 3-ary tree

full 3-ary tree

perfect binary tree

# Height of Perfect and Complete $k$ -ary Trees

## Height of $k$ -ary Trees

- The number of nodes in a perfect  $k$ -ary tree of height  $i - 1$  is

$$\sum_{j=0}^{i-1} k^j = \frac{k^i - 1}{k - 1}.$$

- In other words, a perfect  $k$ -ary tree on  $n$  nodes has height:

$$n = \frac{k^i - 1}{k - 1}$$

$$k^i = n(k - 1) + 1$$

$$i = \log_k(n(k - 1) + 1) = O(\log_k n).$$

- Similarly, a complete  $k$ -ary tree has height  $O(\log_k n)$ .

**Remark:** The runtime of many algorithms that use tree data structures depends on the height of these trees. We are therefore interested in using complete/perfect trees.