
Exercise Sheet 1

COMS10018 Algorithms

Reminder: log n denotes the binary logarithm, i.e., log n = log2 n.

Example Question: Big-O Notation

Question. Give a formal proof of the following statement using the definition of Big-O from
the lecture (i.e., identify positive constants c, n0 for which the definition holds):

5
√
n ∈ O(n) .

Solution. We need to show that there are positive constants c, n0 such that 5
√
n ≤ c ·n holds,

for every n ≥ n0. This is equivalent to showing that (5c )
2 ≤ n holds.

We choose c = 5, which implies 1 ≤ n. We can thus select n0 = 1, since then 1 ≤ n holds for
every n ≥ n0. This prove that 5

√
n ∈ O(n).

Remark: Observe that there are many other combinations of values for c and n0 that satisfy
the inequality we need to prove. For example, if we pick c = 1 then we obtain 25 ≤ n (which
follows from (5c )

2 ≤ n). In this case, we would have to choose a value for n0 that is greater or
equal to 25, in particular, n0 = 25 would do. ✓

1 O-notation: Part I

Give formal proofs of the following statements using the definition of Big-O from the lecture
(i.e., identify positive constants c, n0 for which the definition holds):

1. n2 + 10n+ 8 ∈ O(12n
2) .

2. n3 + n2 + n = O(n3) .

3. 10 ∈ O(1) .

4.
∑n

i=1 i ∈ O(4n2) .

2 Racetrack Principle

Use the racetrack principle to prove the following statement:

n ≤ en holds for every n ≥ 1 .

1



3 O-notation: Part II

Give formal proofs of the following statements using the definition of Big-O from the lecture.

1. f ∈ O(h1), g ∈ O(h2) then f · g ∈ O(h1 · h2) .

2. 2n ∈ O(n!) .

3. 2
√
logn ∈ O(n) .

4 Fast Peak Finding

Consider the following variant of Fast-Peak-Finding where the “≥” sign in the condition in
instruction 4 is replaced by a “<” sign:

1. if A is of length 1 then return 0

2. if A is of length 2 then compare A[0] and A[1] and return position of larger
element

3. if A[⌊n/2⌋] is a peak then return ⌊n/2⌋

4. Otherwise, if A[⌊n/2⌋ − 1]<<< A[⌊n/2⌋] then
return Fast-Peak-Finding(A[0, ⌊n/2⌋ − 1])

5. else
return ⌊n/2⌋+ 1+ Fast-Peak-Finding(A[⌊n/2⌋+ 1, n− 1])

Give an input array of length 8 on which this algorithm fails.

5 Optional and Difficult

Exercises in this section are intentionally more difficult and are there to challenge yourself.

5.1 Advanced Racetrack Principle

Use the racetrack principle and determine a value n0 such that

2

log n
≤ 1

log log n
holds for every n ≥ n0 .

Hint: Transform the inequality and eliminate the log-function from one side of the inequality
before applying the racetrack principle. If needed, apply the racetrack principle twice!
Recall that (log n)′ = 1

n ln(2) . The inequality ln(2) ≥ 1/2 may also be useful.

5.2 Finding Two Peaks

We are given an integer array A of length n that has exactly two peaks. The goal is to find
both peaks. We could do this as follows: Simply go through the array with a loop and check
every array element. This strategy has a runtime of O(n) (requires c ·n array accesses, for some
constant c). Is there a faster algorithm for this problem (e.g. similar to Fast-Peak-Finding)?
If yes, give such an algorithm. If no, justify why there is no such algorithm.

2


